
Domain driven web applications made simple

IIMS Seminar March 21st 2012
Associate Professor David Parsons

 The „Naked Objects‟ pattern was originally
described by Richard Pawson in his PhD
thesis
◦ Based on earlier work on „Expressive Systems‟

 3 principles:
1. Business logic should be encapsulated in domain

objects
2. The user interface should be a direct

representation of the domain objects
3. The user interface should be automatically

generated from the definition of the domain
objects

2

 A faster development cycle
◦ There are fewer layers of code to develop

 Greater agility
◦ Easier to accommodate future changes in business

requirements

 A more empowering style of user interface
◦ Direct interaction with the domain

 Easier requirements analysis
◦ Common domain understanding

3

“an expressive
system has a „make
it so‟ button”

◦ - Richard Pawson

4

 As 1960s high level languages?

 As 1970s rapid application development?

 As 1980s 4GLs?

 As 1990s visual programming?

 As 2000s web frameworks?

5

6

 Isn‟t what it
used to be…

7

 A whole bunch of web apps are basically just
create/read/update/delete (CRUD)
◦ Facebook

◦ Twitter

◦ On-line banking

◦ Google Docs

◦ YouTube

◦ Flickr

◦ …

 I could go on, you get the point…

8

 A simple CRUD application involves four
views for each domain concept
◦ Creating
◦ Editing (update/delete)
◦ Listing many items (read)
◦ Showing single item details (read)

 n entities = 4*n pages
 These views are all very much the same apart

from the fields being exposed
 Useful if a framework can build these views

automatically

9

 Over the last decade or so, the naked objects
pattern has appeared in a number of tools

 Grails (a Groovy web framework) is one of
these….

10

 A dynamic language, compiled to Java
bytecode, to run on a Java virtual machine

 Uses a Java-like syntax

 Interoperates with other Java code and
libraries

 Most Java code is also syntactically valid
Groovy

 Groovy implicitly generates data access
operations on domain objects

11

 Grails (formerly Groovy on Rails) is an open
source web framework built on Spring using
the Groovy language
◦ Spring is a Java web framework that uses other

frameworks

 Grails takes its architectural style from Ruby
on Rails

 You can also find this style in other tools
such as Scala Lift

12

 Grails includes everything you need

 Integrates several common libraries and
frameworks

 Developers can focus on business logic rather
than integration

 You don‟t have to manually glue all the
different components together

13

 Grails is based on Spring in order to reuse
some core services

 Spring uses dependency Injection, a specific
type of Inversion of Control

 The framework can inject capabilities into
objects that follow certain rules of coding

 Think of it as being like different lightbulbs
that have the same fitting

14

 Execution of repetitive tasks by the
framework

 Use of scaffolding

 The framework generates artifacts related to
repetitive tasks
◦ views and controllers

 Repetitive tasks are gone

 Developer customizes the artifacts

15

 You don‟t need configuration files if
everything is in place

 Grails stipulates conventions that make
configuration files unnecessary
◦ e.g. every controller is stored in a specific directory

 Probably the only configuration file you‟ll
need will be the one which is for database
access

16

 The Boating Lake Management System
◦ Captain Bob runs a business hiring out rowing

boats on boating lakes
◦ He wants a system to help him manage his thriving

business
◦ Two of the key concepts in the system are Rowing

Boat and Lake
◦ There is a one to many relationship between them

(one lake can have many rowing boats)

 Demo uses the SpringSource Toolsuite for
Grails development

17

 This is a domain class

 We add a few properties and a relationship (to
one other object)

18

 This is also a domain class

 Again we add a few properties and a
relationship (to many other objects)

19

 e.g. for the Rowing Boat

 To make the controller and views dynamic,
use a scaffold in the controllers

20

 Web app to go
◦ („prod run-app‟ would also persist the data in the

database)

21

 Easy to add validation, field ordering and
visibility, formatting, style sheets etc.

 Most tasks driven from within the domain
objects

 For further info see http://grails.org/

22

http://grails.org/
http://grails.org/
http://grails.org/

