Naked Objects and
Groovy Grails

Domain driven web applications made simple

[IMS Seminar March 215t 2012
Associate Professor David Parsons

Naked Objects

» The ‘Naked Objects’ pattern was originally
described by Richard Pawson in his PhD
thesis
- Based on earlier work on ‘Expressive Systems’

» 3 principles:

1. Business logic should be encapsulated in domain

objects

2. The user interface should be a direct
representation of the domain objects

3. The user interface should be automatically
generated from the definition of the domain
objects

‘ws MASSEY UNIVERSITY
TE KUNENGA KI PUREHUROA
L ————

Benefits

» A faster development cycle
- There are fewer layers of code to develop
» Greater agility

- Easier to accommodate future changes in business
requirements

» A more empowering style of user interface
- Direct interaction with the domain

» Easier requirements analysis
- Common domain understanding

MASSEY UNIVERSITY
' TE KUNENGA KI PUREHUROA

»‘an expressive
system has a ‘make
it so’ button”

o — Richard Pawson

Same old claims?

» As 1960s high level languages?

» As 1970s rapid application development?
» As 1980s 4GLs?

» As 1990s visual programming?

» As 2000s web frameworks?

MASSEY UNIVERSITY

‘W OTE KENGA KI PUREHUROA
EHURO Ay

Architecture Layers

I AN
\/\>\</Vv

In many object-based systems, the object model The object model is also translated into a series of
must be translated into a relational database user tasks or business processes, implemented using
representation for storage. a client-side development tool.

i } { i ;l |
\\\\/\ /,‘\
VA AV

Programmers are then frequently tempted to connect Keeping a one-to-one mapping between the user
the user interface scripts directly to the relational constructs and the core business objects reduces the risk
database, bypassing the business object model. of bypassing, and maintains the value of the objects.

§ MASSEY UNIVERSITY
. TE KUNENGA KI PUREHUROA
N -

Lego

High

» Isn’t what it
used to be...

Contribution

Low

Low o ~ High
Versatility
Lego pieces can be classified according to their versatility and average contribution to a model. The same

is true of software components or objects. In expressive system design, the aim is to identify the handful of
objects in the top right-hand corner and expose these directly to the user.

-

MASSEY UNIVERSITY
TE KUNENGA KI PUREHUROA

CRUD Apps

» A whole bunch of web apps are basically just
create/read/update/delete (CRUD)
- Facebook
o Twitter
> On-line banking
- Google Docs
> YouTube
> Flickr

o]

» | could go on, you get the point...

= s MASSEY UNIVERSITY
q@, TE KUNENGA KI PUREHUROA
AN W -

Repetition in CRUD Web Apps

» A simple CRUD application involves four
views for each domain concept
- Creating
- Editing (update/delete)
> Listing many items (read)
- Showing single item details (read)

» h entities = 4*n pages

» These views are all very much the same apart
from the fields being exposed

» Useful if a framework can build these views
automatically

‘@ MASSEY UNIVERSITY
' TE KUNENGA KI PUREHUROA

R T~ Ty

So, anyway

» Over the last decade or so, the naked objects
pattern has appeared in a number of tools

» Grails (a Groovy web framework) is one of
these....

MASSEY UNIVERSITY

¥, TE KUNENGA KI PUREHUROA
W -

10

Groovy

» A dynamic language, compiled to Java
bytecode, to run on a Java virtual machine

» Uses a Java-like syntax

» Interoperates with other Java code and
libraries

» Most Java code is also syntactically valid
Groovy

» Groovy implicitly generates data access
operations on domain objects

‘ms+ MASSEY UNIVERSITY
TE KUNENGA KI PUREHUROA
B

11

Grails

» Grails (formerly Groovy on Rails) is an open
source web framework built on Spring using
the Groovy language

- Spring is a Java web framework that uses other
frameworks

» Grails takes its architectural style from Ruby
on Rails

» You can also find this style in other tools
such as Scala Lift

‘ms+ MASSEY UNIVERSITY
TE KUNENGA KI PUREHUROA
B

12

Full Stack

» Grails includes everything you need

» Integrates several common libraries and
frameworks

» Developers can focus on business logic rather
than integration

» You don’t have to manually glue all the
different components together

MASSEY UNIVERSITY
' TE KUNENGA KI PUREHUROA

13

Grails and Spring

» Grails is based on Spring in order to reuse
some core services

» Spring uses dependency Injection, a specific
type of /nversion of Control

» The framework can inject capabilities into

objects that follow certain rules of coding

» Think of it as being like different lightbulbs
that have the same fitting

‘ws MASSEY UNIVERSITY
TE KUNENGA KI PUREHUROA 14
L ————

DRY: Don’t Repeat Yourself

» Execution of repetitive tasks by the
framework

» Use of scaffolding

» The framework generates artifacts related to
repetitive tasks
> views and controllers

» Repetitive tasks are gone
» Developer customizes the artifacts

¥ 2% MASSEY UNIVERSITY
¥, TE KUNENGA KI PUREHUROA

15

Zero Configuration

» You don’t need configuration files if
everything is in place
» Grails stipulates conventions that make

configuration files unnecessary
- e.g. every controller is stored in a specific directory

» Probably the only configuration file you'’ll
need will be the one which is for database
access

“wm+ MASSEY UNIVERSITY
TE KUNENGA KI PUREHUROA

16

Demo

» The Boating Lake Management System

- Captain Bob runs a business hiring out rowing
boats on boating lakes

- He wants a system to help him manage his thriving
business

- Two of the key concepts in the system are Rowing
Boat and Lake

> There is a one to many relationship between them
(one lake can have many rowing boats)

» Demo uses the SpringSource Toolsuite for
Grails development

‘es* MASSEY UNIVERSITY
TE KUNENGA KI PUREHUROA
B e

17

Create the RowingBoat

» This is a domain class

» We add a few properties and a relationship (to
one other object)

2 RowingBoat.groovy i
package com.water

class RowingBoat {

static constraints = {

¥

int seats

String colour

int length

static belongsTo = [alLake:Lake]

ASSEY UNIVERSITY
E KUNENGA KI PUREHUROA
.

=

18

Create the Lake

» This is also a domain class

» Again we add a few properties and a
relationship (to many other objects)

@ RowingBoat.groovy fIEl Lake.groovy &
package com.water

class Lake {

static constraints = {

¥

String name

String location

static hasMany=[boat:RowingBoat]

ASSEY UNIVERSITY
E KUNENGA KI PUREHUROA
.

=

19

Generate code

» e.g. for the Rowing Boat
grails> ¢ generate-all com.water.RowingBoat] -

=

Project: Type Grails command and press ‘Enter’
» To make the controller and views dynamic,
use a scaffold in the controllers

B Lake.groovy (@ RowingBoatController & . [& LakeController.groov T}l
package com.water

“import org.springframework.dao.DatalntegrityViolationException

class RowingBoatController {
def scaffold=true

1

“w+ MASSEY UNIVERSITY
"W TE KUNENGA KI PUREHUROA
W -

20

Make it so!

» Web app to go

> (“‘prod run-app’ would also persist the data in the
database)

- s ™

grails> ¥ run-app -

Project: Type Grails command and press 'Enter’

& Home 5 RowingBoat List)))
& Home /5 Lake List % New Lake
Create RowingBoat
Show Lake
AL ake * comwater Lake - 1[~]
Boat com.water RowingBoat - 2
Colour | Red com water RowingBoat - 1
Length = | 30 Location Albany
Seats * 6 Name Massey Lake
(3 Create (g Edit & Delete

MASSEY UNIVERSITY

TE KUNENGA KI PUREHUROA)1

And so on...

objects

» Easy to add validation, field ordering and
visibility, formatting, style sheets etc.

» Most tasks driven from within the domain

» For further info see http://grails.org/

PPPPPPPP

‘mg+ MASSEY UNIVERSITY
TE KUNENGA KI PUREHUROA
L ——

eeeeeee
productivity.

eeeeee

€ GRAILS

S

Training Community Downloads Plugins Documentation

the search is over

mier dynamic
for the JVM.

‘ spring on of VIMWare'

¥ rosusT
Powered by Spring, Grails outperforms the

22

http://grails.org/
http://grails.org/
http://grails.org/

