Position Papers from
The 8h Workshop for PhD Students
in Object-Oriented Systems

Frank Gerhardt, Luigi Benedicenti, Erik Ernst (Eds.)



Contents

1 Measuring Software Engineering Data through Object Mod-
els 1

2 Contextual Objects in the Software Engineering and in the

Organization 7
3 Interoperable Component Specification Using Protocols 13
4 Relative Types 21

5 Decreasing the Gap Between Formal Specification Languages
and Component-Based Development 37

6 Formalization of the Component Object Model (COM) — The
COMEL Language 49

7 How to Integrate Schema Evolution into the Persistent Garbage
Collection 61

8 Run-Time Reusability in Object-Oriented Schematic Cap-
ture 69

9 Comparing MOPs 77

10 A Dynamic Logic Model for the Formal Foundation of Object-
Oriented Analysis and Design 85

11 A Refinement Approach to Object-Oriented Component Reuse 95



il CONTENTS

12 Application of Hyperexponential Model to Estimation of Ob-
ject Oriented Software Reliability 105

13 Object-Oriented Control Systems on Standard Hardware 115
14 Intermodular Slicing of Object-Oriented Programs 121

15 Design of an Object-Oriented Computational Steering Sys-
tem 131

16 Extended Reuse with Verb Inheritance — A New Approach
to Software Construction and Reuse 147

17 A Compositional Approach to Concurrent Object Systems 155



Run-Time Reusability in Object-Oriented
Schematic Capture

David Parsons, Southampton Institute, U.K.

1 Introduction

This position paper describes a graphical tool for electronic circuit design
that exploits a number of object-oriented techniques to generate code in the
VHDL-AMS mixed mode hardware description language. In particular it
uses a lightweight ‘reflective’ architecture to allow run time creation of new
component types, and encapsulates some complex aspects of selecting com-
ponent models behind simple visual representations. Although the current
system has been developed using C++, its architecture is designed to be
independent of any particular object-oriented language or software tool.

2 Schematic Capture

‘Schematic capture’ means the translation of the graphical representation of
an electronic circuit (a schematic) into some kind of textual representation
such as a netlist, hardware description language or sirnulation code. This
in turn can be used to generate graphical output representing the electronic
waveforms within the circuit and/or for circuit synthesis, for building a phys-
ical version of the circuit (figure 1.).

Schematic capture of electronic circuit designs is a well-established soft-
ware application within the field of Electronic Design Automation (EDA).
The standard graphical symbols (such as ANSI and IEC) for describing the
components and connections in electronic circuits transfer easily to the do-
main of a Graphical User Interface (GUI). The circuit schematics created
in this way can then be translated into a range of non-graphical representa-
tions, including digital hardware description languages such as VHDL (VH-
SIC Hardware Design Language), specialist electronic simulation languages



70 David Parsons

‘ Simulation control dats |

| gaphical cutput
= L s B
]

grephicel circuit design textual

Figure 1: Schematic capture systems convert the graphical representation of
a circuit into a text representation that may be used for simulation or design
for manufacture.

such as SPICE (Simulation Program with Integrated Circuit Emphasis) or
more general simulation languages such as Modelica.

3 The Need for New Schematic Capture Sys-
tems

Although existing schematic capture and simulation systems are adequate for
many design tasks, there are domains where they are found wanting. One
limitation of many traditional systems is the inability to model components
at various levels of abstraction. We might wish to model a component as
a single entity, but many EDA systems rely on structural modelling; they
require higher level components to be modelled as aggregations of discrete
components. The power switch in figure 3, for example, is modelled here as
a collection of separate internal components: A switch, two resistors and a
capacitor. However, we might prefer, for reasons of efficiency and simplicity,
to model the whole component as a single higher level entity, treating it as
a ‘black box’ with a behavioural rather than a structural description.

The same principle applies to the modelling of entirely new components,
where a designer may wish to simulate the proposed behaviour of objects
that have yet to be manufactured. Behavioural modelling facilities make
this straightforward. While there are a number of systems that do allow for
behavioural modelling, these are typically only applicable to digital circuits.
Systems that do allow for mixed mode (analogue and digital) modelling are
not always effective in simulating circuits that are highly complex, where the
simulation time is too long and/or the results are inaccurate.



David Parsons 71

I T
O IF Contral = 1" USE
Roff Ron*Csw*Vswitch'dat + Yswitch
,”a == Ron*lswitch;
O—1 HsE
CswVswitch'dot + Vswitch*Goff
Ron == [switch;
0.05 Csw END USE
- T
O
structural power switch model behavioural power switch mode!

Figure 2: Modelling a switch using structural aggregation versus a ‘black
box’ behavioural abstraction.

4 Schematic Capture for VHDL-AMS

Recent advances in languages for hardware design and simulation, particu-
larly addressing the issues raised above, have stimulated research into more
powerful and flexible schematic capture interfaces. One key development has
been the publication of standard analogue extensions to the IEEE standard
VHDL called VHDL 1076.1 (IEEE, 1997). The complete language, including
the full VHDL 93 subset is also known as VHDL-AMS (VHSIC Hardware
Design Language - Analogue and Mixed Signal). This language is intended
for the design and simulation of mixed mode (analogue and digital) circuits,
and provides a number of challenges for the schematic capture interface de-
signer. A major aspect is the need to provide behavioural modelling facilities
for both digital and analogue components via the interface. Although new
components can be described at the code level by manually writing VHDL-
AMS entity descriptions into a library file, this alone does not address the
issue of schematic capture where a visual representation of any newly defined
component must be available to be manipulated and integrated into circuit
schematics. It is essential that the power to build components structurally at
run time via the schematic editor (i.e. simply assemble components from a li-
brary into larger objects) is matched by the power to model new components
behaviourally at run time.

One of the key aspects of mixed mode modelling in this language is the



digital inputs :Do—

analogue inpLit / \ f\/ r—NAnd%
S j

digit al input

Figure 3: NAnd gates with different types of input signal requiring different
VHDL-AMS model invocations.

added layer of complexity that it introduces to the underlying representa-
tional syntax, a complexity that a graphical interface can usefully render
more transparent. The most obvious example of this is that different models
of the same physical component may have to be used depending on the types
of components they are connected to. Figure 3 shows two ‘NAnd’ gates that
indicate how connectivity may vary for different components of the same
type.

‘NAndl’ has two digital inputs, whereas ‘NAnd2’ has one digital and one
analogue input. From the circuit designer’s perspective, these are objects of
exactly the same type. However in the context of VHDL-AMS code gener-
ation these two gates must be invoked using two separate models, one for
a fully digital gate and one for a gate with mixed mode input. A similar
difference in models occurs where the output from digital components has an
analogue connection leading to a proliferation of possible models that could
be selected to represent a single physical object. Clearly, this is the kind
of complexity that a schematic capture system could usefully encapsulate
behind a more transparent interface.

5 Applying Object Technology

Previous work in building schematic capture interfaces suggests that object-
orientation provides an appropriate paradigm. Object technology has been
applied in many earlier schematic capture systems, using a range of tools such
as Smalltalk (Walker, 1991), C++ (Raghavan, 1990) and object-oriented

databases (Gupta et al, 1989). This is because there is an apparently sim-

2 David Parsons



David Parsons 73

ple mapping between the hardware components of an electronic circuit and
the conceptual objects of object oriented design and it has also offered the
widely promoted benefits of reusability and extensibility. Object technology
provides the basis for extensibility at the coding stage using techniques such
as specialisation inheritance and run time polymorphism (dynamic binding),
and it is these traditional architectures that have typically been applied to
modelling electronic components, an approach exemplified by Mak (1991).
Using these techniques it is easy for an object-oriented programmer to add
new classes/types to an application during development or maintenance.

Despite the clear benefits of an object-oriented approach, there are some
areas where problems persist. Once a piece of software is delivered to the user,
access to source code extensibility features is no longer available. Instead of a
flexible and extensible environment, users may find themselves working with
an inflexible monolith, providing no facilities for adding new types of object.
Nevertheless, in many cases the ability for the user of a system to introduce
new types at run time is desirable, even necessary. Electronic circuit design is
a good example of this because a user may wish to use behavioural modelling
to design and simulate physically complex components that are not provided
in a standard library.

Some difficulties can also arise when building an object-oriented interface
to an underlying system that is not itself object-oriented. VHDL-AMS, while
exhibiting some of the characteristics of an object oriented language, does
not have inherent polymorphism. This means that there can be no one-
to-one mapping between a hierarchy of application classes in a schematic
capture interface and the hardware oriented ‘objects’ being modelled in the
underlying hardware design language. The nature of mixed mode modelling
requires a solution that addresses the potential for high syntax complexity
in the generated code while maintaining the simplicity of the user interface.

The VHDL-AMS schematic capture system addresses both system exten-
sibility and syntax complexity by bringing some innovative aspects of object
technology to bear. In particular, it applies an approach to object oriented
design that allows the maximum flexibility in adding new types of object
to a running system, while encapsulating some of the complexities of mixed
mode simulation behind an intuitive interface. In both cases, aspects of
polymorphism are used to build objects that are semantically rich.



74 David Parsons

6 Virtual Polymorphism

To provide the facility to add new component types at run time the software
is designed in a somewhat unconventional manner, rejecting the traditional
model of dynamically bound application classes in favour of what might be
termed ‘virtual polymorphism’. This term is used here to describe an archi-
tecture where the semantic richness normally associated with a classification
hierarchy is collapsed into a single heavily configurable class. Objects of this
single class are able to exhibit apparently polymorphic behaviours, flagged
by a mechanism similar to a ‘virtual constructor’ (Coplien, 1992) where type
definition is hidden behind a base class with a parameterised constructor.
The implementation of these polymorphic behaviours is achieved by a form of
reflection (Buschmann, 1996), where metadata is held separately from the do-
main classes that use it to enable it to be more easily modified and extended.
In this instance the metadata provides all the characteristics of electronic
component representations in schematic capture including their images, the
nature of their connections (analogue or digital) and the ability to generate
code. By adding to the meta data we can easily add new component types.
The design strategy uses a number of aspects of reflection, notably ‘property
lists” (Sommerlad, 1997) and dynamic binding of predictable primitive types
(such as graphics primitives and basic data types) rather than unpredictable
domain level objects (new types of component).

7 Visual Polymorphism

In terms of the schematic capture graphical user interface, a second form of
polymorphism is applied to reduce complexity. This might be termed ‘visual
polymorphism’, where a single visual representation may be used to invoke
underlying VHDL-AMS models of different types, depending on the con-
text of connectivity to other objects (Parsons and Kazmierski, 1997). This is
specifically applied in the context of designing mixed mode circuits, where the
connectivity of components affects the way they must be described in VHDL-
AMS. Because of the non-polymorphic nature of the language, a single digital
component may have a number of possible models for different combinations
of connectivity (ref. figure 3) but from a design perspective only one type of
component is being used. One of the key features of the schematic capture
interface is that it renders the selection of appropriate models transparent to



David Parsons

~

ot

the user by passing this responsibility to objects within the system. A digital
component object is ‘aware’ of the nature of the nodes to which it connects,
and when it contributes to the generation of code will invoke the appropriate
model by creating a ‘code token’ object that matches its particular circum-
stances. The type of model invoked by a particular component in the circuit
can change dynamically if the nature of its connections change.

8 Summary

One of the key requirements of the VHDL-AMS interface has been to pro-
vide some of the power of an underlying language through the graphical user
interface, including the user’s ability to integrate new component types into
the run time system. In essence, a form of visual programming interface
is provided to allow the user to easily create new types of object without
having to modify the program source. The software is thus a combination
of application and programming environments, the lines between which have
become increasingly blurred in recent years. However, this extensibility is
provided without incurring an overhead of non-proprietary tools or depen-
dence on specialist language or platform specific techniques. Rather, a reflec-
tive architecture is provided using standard C++ features that could easily
be translated to other languages. The system demonstrates that object tech-
nology can provide run time support for reuse of an existing architecture to
model new components and integrate them into a mixed-mode modelling en-
vironment. In addition, the complexity of mixed mode simulation has been
encapsulated behind visual component representations that exhibit their own
form of polymorphism, namely the ability to respond to their electronic con-
text when generating VHDL-AMS code. The system is unique in providing a
schematic capture interface specifically tailored to exploiting the mixed mode
modelling capabilities of VHDL-AMS. It also demonstrates the breadth of
techniques available with object technology for solving problems even in very
specialised application domains.

References

[1] Buschmann, F. Reflection, in Pattern Languages of Program Design 2
ed. Vlissides, J., Coplien, J. and Kerth, N. Addison-Wesley, Reading,



76 David Parsons

Mass., 1996.
2

Coplien, J. Advanced C++ Programming Styles and Idioms Addison-
Wesley, Reading, Mass, 1992.

[3] Gupta, Rajiv, Cheng, W., Gupta, Rajesh, Hardong, 1. and Breuer, M.
An Object-Oriented VLSI CAD Framework - a case study in rapid pro-
totyping IEEE Computer, May 1989, vol. 22, no. 5, p.28-37.

[4] IEEE. 1076.1 Working Document - Definition of Analog Eztensions to
IEEE Standard VHDL IEEE 1076.1 Working Group, May 1997.

[5] Kazmierski, T. Fuzzy-Logic Digital-Analogue Interfaces for Accurate
Mized-Signal Simulation Proceedings of Design Automation and Test
in Europe (DATE), Paris, February 23-26, 1998, p.941-4.

[6] Mak, V. DOSE: A Modular and Reusable Object-Oriented Simula-
tion Environment Proceedings of the SCS Multiconference on Object-
Oriented Simulation, vol. 23, no. 3, San Diego, 1991, p.4-11

[7] Parsons, D. and Kazmierski, T. Visual Polymorphism in Schematic
Capture for VHDL-AMS Proceedings of the 1997 IEEE/VIUF Interna-
tional Workshop on Behavioral Modeling and Simulation (BMAS’97),
Arlington, Virginia., October 20-21, 1997.

[8] Raghavan, R. Building Interactive Graphical Applications Using C++ in
Applications of Object-Oriented Programming ed. Pinson L. and Weiner
R. Addison-Wesley, Reading, Mass., 1990.

[o

Sommerlad, P. Self-aware Software: Understand and Build Reflective
Architectures Proceedings of OOPSLA 97, 1997.

[10] Walker, I. A Smalltalk/V VLSI CAD Application Computer-Aided
Engineering Journal, April 1991, vol. 8, no. 2, p.47-53, 1991.



