
Position Papers from
The 8th Workshop for PhD Students

in Object-Oriented Systems

Frank Gerhardt, Luigi Benedicenti, Erik Ernst (Eds.)



Contents

1 Measuring Software Engineering Data through Object Mod-
els 1

2 Contextual Objects in the Software Engineering and in the
Organization 7

3 Interoperable Component Speciflcation Using Protocols 13

4 Relative Types 2t

5 Decreasing the Gap Between Formal Specification Languages
and Component-Based Development 37

6 Formalization of the Component Object l\tlodel (COM) - The
COMEL Language 49

7 How to Integrate Schema Evolution into the Persistent Garbage
Collection 61

8 Run-Time Reusability in Object-Oriented Schematic Cap-

9 Comparing MOPs

10 A Dynamic Logic Model for the Formal Foundation of Object-
Oriented Analysis and Design

11 A Refinement Approach to Object-Oriented Component Reuse 95

69

77

85



ii CONTEN?S

12 Application of Hyperexponential Model to Estimation of Ob-
ject Oriented Software Reliability 105

13 Object-Oriented Control Systems on Standard Hardware 115

14 Intermodular Slicing of Object-Oriented Programs 12L

15 Design of an Object-Oriented Computational Steering Sys-
tem 131

16 Extended Reuse with Verb Inheritarce - A New Approach
to Software Construction and Reuse t47

17 A Compositional Approach to Concurrent Object Systems 155



Run-Time Reusability in Object-Orierrted
Schematic Capture

I)avid Parsrtns, Southantpton Institutc, U.K.

1 Introduction
This position paper describes a graphiual tool for eiectronic circuit cltsigu
that exploits a numbcr ofobiect-oriented techrriclues ro getelate cricle in the
\iIlDL--{\'lS rrixecl ltocle hardr,vale description language. Il particular it
uses a lighlrveight 'reflective' archilectule to allorv lun timc creation of ncu,
conponent t1'pes, ancl errcapsu.lates some conrplex aspects of sclccting com-
ponent moclels behind siurple visual representations. ,\lthough the crrrrent
s1'stern has been developed using C++, its archirccture is clcsignecl to l-ie

indepencierrt of a,n1, particuiar object-orientecl language or softu,arc tool,

2 Schematic Capture

'Schenratic capture' nreans the trilnslation of the graphical representatiun of
an electronic cirr:rrit (a schen-ratic) into some kind of texLual representation
such as a neilist. hardware description language or sirlulation code. This
in turn can be useci to generate graphical output tepresentirrg the electronic
*'ar.eforrns u,ithin the circuit and/or fbr circuit sl.nthesis. for building a phvs-
ical version of the circuit (ligure 1.).

Schematic capture of electronic circuit designs is a ncll-cstablished soft-
*'are application rvithin the field of Electronic Design Automation (ED,\).
The standard gra.phical sl,nbols (such as ANSI and IECI) for clescribing the
compononts and connections in electronic circuits transfer casill'to the clo-

nrajn of a Graphical User Interface (GUI). The circuit schematics cleateci
in this rvar. can then ]re translated intri a rarrge of rrolr-graphical reprcscnta-
tions, including digital harcll,are description languages such a.. \'HDL (\'H-
SIC Harrit.are Design Language), specialist electronic sirnulation languages



David Parsons

Figure 1: Schematic capture systems convert the graphical representation of
a circuit into a text representation that may be used for simulation or design
for manufacture.

such as SPICE (Simulation Program with Integraied Circuit Emphasis) or
more general simulation languages such as Vlodelica.

The Need for New Schematic Capture Sys-
tems

Although existing schematic capture and simulation systems are adequate for
many design tasks, there are domains where they are found wanting. One
limitation of many traditional systems is the inability to model cornponents
at various levels of abstraction. We might rvish to model a component as

a single entity, but many EDA systems rely on structural modelling; they
require higher level components to be modelled as aggregations of discrete
components. The power switch in figure 3, for example, is modelled here as

a collection of separate internal components: A switch, two resistors and a
capacitor. Horvever, we might plefer, for reasons of efficiency and simplicit5',
to model the whole cornponent as a single higher level entity, treating it as

a 'black box' with a behavioural rather than a structural description.
The same principle applies to the modelling of entirely new componerts,

where a designer ma)r wish to simulate the proposed behaviour of objects
that have yet to be manufactured. Behavioural modelling facilities make
this straightforward. While there are a numbei- of systems that do allow for
behavioulal modelling, these are typically only applicable to digital circuits.
Systerns that do allow for rnixed mode (analogue and digital) modelling are

not alw'avs effective in simulating circuits that are highly complex, where the
simulation time is too long and/ol the results are inaccurate.

7B

3



David Parcons

structur. pwer s*ltch hodel beh.vioural power switch model

Figure 2: Modelling a switch using structural aggregation versus a 'blach
box' behavioural a,bstraction.

4 Schematic Capture for VHDI-AMS
Recent advances in languages for hardware design and simulation, particu-
larly addressing the issues raised above, har.e stimulated researcli into more
powerful and flexible schematic capture interfaces. One key development has

been the publication of standard analogue extensions to the IEEE standard
\zHDL called VHDL 1076.1 (IEEE, 1997). The complete language, including
the full VHDL 93 subsct is also known as \/HDL-AMS (VHSIC Hardware
Design Language - Analogue and iMixed Signal). This language is intended
for the design and simulation of mixed mode (analogue and digital) circuits,
and provides a number of challenges for the schematic capture interface de-

signer. A ma.jor aspect is the need to pror.ide behavioural modellingtacilitlcs
for both digital and analogue components via the interface. Although nerv

components can be described at the code level by manually writing VHDL-
AMS entity descriptions into a library file, this alone does not address the
issue of schematic capture where a visual representation of any newly defined
component must be available to be manipulated and integlated into circuit
schematics. It is essential that the power to build components structulally at
run time via the schematic editor (i.e. simply assemble components from a 1i-

brary into larger objects) is matched by the power to model new components
behar.iourally at run time.

One of the key aspects of mixed mode modelling in this Ianguage is the

7L



Dayid Parsons

nIt-r] llAndl

u,,cal ro"r! I ),

nra{lLe -F-i /\, ,, _l''j.
:,>

Figure 3: NAnd gates rvith different t1.pes of input sigtal rcquirirg clifferent
YHDL-.\ \i5 ruo,lcl inr,cariou>.

added la,r'el ol conrplexitr. that it introduces to thr: unr:lerlying leprcselttr-
tional srertax. a contpiexitv that a grapliical interface can uscfulh.r.ender
mole transparent. The most obvious erarnlrie olLhis is that dillelerrt rnodels
of thc same phvsical component mav har.e to be used depending on tlrt tvpe,s
of cornponr:n1;s thev ale connectecl to. Frgure 3 shorvs tno NArrd' gates that
indrcate hor, connectivltl- nrav r.arv lor dillelent compotrents of the -sarrie
i)'pe.

'N,\ndl'lras tu.r.i digital inputs. rvhereas'NAld2'has one digital and one
analogue inpLrt. Fronr the circuir desigler's pelspective. these are objer:ts ol
exactll' the same tvpe, Florver.el irr thc contexl of VHDL-AI!{S code gcner-
ation these trvo gates rtmst be irrvoked using t\uo sepi.rrate models, olie lbr
a lull1' digituil gate and one lbl a gate r,vith mixed ntodc input. A similar
diflerenoe in models ciccurs rvirere the ontput lrom digital componelts has arr

analogue conncction leading to a prolif'cration of possible models that coulci
bc selectecl to replesent a single ph1,'sical object. Clearl;.. 1,his is the kincl
of cornplexitl that a schematic captrlre sr.stcm corLld usefullv elcapsulate
behind a more transpalent intr:rface-

5 Applying Object Technology

Previous u'olk in building schematic captulc iuterlaccs suggests th:i1, object-
orientation lrrovicles al appropriate paradigm. Object technologl'has been

applied in nranv earlier- schenratic capture systerns. using a range oftools such
as Srnailtalk (\Valker. 1991), C+T (R.aghavan, 1990) and object-olientecl
databases (Gupta et al, 1989)- This is bccausc there is ar apparentll.sim-

t:



David Parsons

ple mapping between the hardware components of an electronic circuit and
the conceptual objects of object oriented design and it has also offered the
widely promoted benefits of reusability and extensibility. Object technology
provides the basis for extensibility at the coding stage using techniques such
as specialisation inheritance and run time polvmolphism (dynamic binding).
and it is these traditional architectures that have typically been applied to
rnodelling electronic components, an approach exemplified by Mak (t99i).
Using these techniques it is easy for an object-oriented programmer to adcl

ne'lv classes/types to an application during development or maintenance.
Despite the clear benefits of an object-oriented approach. there ale some

areas rl,here problems persist. Once a piece of software is delivered to the user,
access to source code extensibility features is no longer available. Instead of a
flexible and extensible environment, users may find themselves workiug witli
an inflexible monolith, providing no facilities for adding new types of object.
Nevertheless, in rnany cases the ability for the user of a systern to introduce
ne$, types at run time is desirable, even necessary. Electronic circuit design is
a good example of this because a user may r.vish to use behavioural modelling
to design and simulate physicalll, cornplex components that are not plovided
in a standard library.

Some difficulties can also arise rvhen building an object-oriented interface
to an underlying system thai is not itself object-oriented. VHDL-A\4S, r.r'hi1e

exhibiting some of the characteristics of an obiect oriented language, does

not have inherent polvmorphism. This means that there can be no one-

to-one rnapping between a hierarchS, of application classes in a schematic
capture interface and the hardware oriented'objects' being modelled in the
underll,ing hardware design language. The nature of mixcd mode urodelling
requires a solution that addresses tlie potential for high syntax cornplexity
in the generated code while maintaining the simplicity of the user interface.

The VHDL-A[4S schematic capture system addresses both system exten-
sibility and syntax complexity by bringing some innor,ative aspects of ob.ject

technology to bear. In particular, it applies an approach to object oriented
design that allows the maximurn flexibiliiy in adding new types of object
to a running system, while encapsulating some of the cornplexities of mixed
mode simulation behind an intuitiye interface. In both cases, aspects of
polyrnorphism are used to build objects that are semanticalll'rich.



David Parsols

6 Virtual Polymorphism
To provide the facility to add new component types at run time the software
is designed in a somewhat unconventional manner, rejecting the traditional
model of dynamically bound application classes in favour of what might be
termed'virtual polymorphism'. This term is used hele to describe an archi-
tectuLe rvhere the semantic richness normali;, associated rvith a classification
hierarchy is collapsed into a single heavily configurable class. Objects of this
single class are able to exhibit apparently polymorphic behaviours. flagged
by a mechanism similar to a 'virtual constructor'' (Cop1ien, 1992) where type
definition is hidden behind a base class with a parameterised cons{ructor.
The implernentation of these polyurorphic behaviours is achieved by a form of
reflection (Buschmann, 1996), u4rere metadata is held separately from the do-
main classes that use it to enable it to be more easily modified and extended.
In this instance the rnetadata provides all the characteristics of electronic
component representations in schematic capture including their images, the
nature of their connections (analogue or digital) and the ability to generate
code. By adding to the meta data rve can easily add new component types.
The design stratcgy uses a number of aspects of reflection, notably 'property
iists' (Sommerlad, 1997) and dynamic binding of predictable primitive types
(such as graphics primitives and basic data types) rather than unpredictable
domain Ievel objects (new types of cornponent).

7 Visual Polymorphism
In terms of the schematic capture graphical user interface, a second fbrm of
polymorphism is applied to reduce complexity. This might be termed 'visual
polymorphism', rvhere a single visual representation may be used to invoke
underlying VHDL-AVIS models of different types, depending on the con-
text ofconnectivity to othel objects (Parsons and Kazmierski, 1997). This is

specifically applied in the context of designing mixed mode circuits, where the
connectivity of components affects the way they must be described in VHDL-
AlvIS. Because of the non-polymorphic nature of the language, a single digital
component may have a number of possible models for different comhinations
of conrrcctivity (ref. figure 3) but lrom a design perspectlve only one type of
component is being used. One of the key features of the schematic capture

interface is that it renders the selection of appropriate models transparent to

71



David Parsons

the usel bl'passing this lesponsibilirl'to ohjects tithiri the s),stem, A cligital
cornponent ob.ject is 'arrare' of the uature of the nodes to ivhich it connects.
and when it contributcs to the genclation ofcocie rvill invoke the appropriate
model br, creating a 'code tokcu' objecL that uratches its particular cilcum-
stances. Thc t1'pe of mociel invoked bv a particular component in the circuit
can change dynamicalll if tire nalure of its conlections change.

8 Summary
One of the ire5,' rerluirerrents ol the \,'HDL-ALIS interlace has bccn to pro-
vide some ofthe power ofan undcrlvirig language through the graphical user
inter'Iacc, inclr,rding the user's abilitv to intcgrate ne\\: corrponent t1'pcs inro
the run tirle svstern. In cssencer, a fbrm of r,isual prograrrrrring inter{ace
is proviclecl to allolv the user to easili' crcatc 1rc{' types of objecl; u'ithout
having to modi.1'v the plogran source. The softrvare is thus a combination
of applictrtiorr and programrning enr,ilonments. the lines bctrveen u.hich have
becorne ircreasingll.blurrcd in rccent yeals, I-lor,ever. this extensibilitv is

pror.ided u.ithout incurring an ovcrhcad of non-proprietarl' tools or depel-
dence on specialist lauguage or platform spccific techniqucs. Rather. a leflec-
tive architecture is provided using standard C+- I'eatures that coukl easiil'
be translatcd to other languages. The sl,stenr demonstrates that ob.iect tcch-
nologl' cau pror,ide run timc suppott for reuse of an existing architectule lo
model ner.,' cornponents ancl integlate therl into a mixed-rrrode rnodelling en-
vironment. h adclition. thc complexitl,ol mi.rccl mode sinlulation has been
encapsula,ted behind vislal component representations {ihat exhibit their ou,n
form of polymorphism, namel1'rhe abllity to lespond to theil electronic con-
text s,hen gr:nerating \rHDL-ANiS cocle. The s)'stem is unique in pror.irling a
schemailc capture interface specillcally tailorecl to e-xploitlng the mixed mocir:
nrodelling capabilities of VHDL-AIIS. It also dr:monstlates the brcadth ol
techniqucs available rvith r"lbiect technology lbr solvitg problcms even in r.en.
rpcciaJisod appliral iun dt'maitt-.

References

f 
1] Buschmann, F. R.efiect'ion, in Pattern LrLnguages ct.f Progratrt, DestgrL 2

ed, \ilissides. J., Coplien, J. ancl lierth, \. Addison-\Vesley, Reading,

75



David Parsons

lvla,ss., 1996.

[2] Coplien, J. Ad,uanced C++ Programming Styles and ld'ioms Addison-
\Vesley, Reading, Ivlass, 1992.

[3] Gupta, Rajiv, Cheng, W., Gupta, R.ajesh, Flardong, I. and Breuer, M.
An Object-Oriented, VLSI CAD Frameuork - a case stud,E i,n rapi,d pro-
totypi,ng IEEE Computer, N{ay 1989, r,o1. 22. no. 5. p.28-37.

[4] IEEE. 10"/6.1 Wotking Docum,ent - Defi,nition oJ Analog Ertenstons to
IEEE StantLard VHDL IEEE 1076.1 lVorking Group, May 1997.

[5] Kazrnierski, T. Fuzzy-Logic D'ig'ital-Analogue Interfaces for Accurate
Mined Si,gnal S'imulati.on Proceedings of Design Automation and Test
in Europe (DATE), Paris, Februaly 23-26,1998, p.941-4.

f6] Mak, V. DOSE: A Mod.ular and Reusable 0bject-Or'ier-rted Si,mula-

ti,on Enu'ironmenf Proceedings of the SCS Multiconference orr Objeci-
Oriented Simulation. r'o1. 23, no. 3, San Diego, 1991. p.4-11

[7] Parsons, D. and Kazmierski, T. Vtsual Polymorphism i,n Schernati,c

Co,pture ;for VHDL-AMS Proceedings of the i997 IEtrE/VIUF Interna-
tional Workshop on Behavioral Modeling and Simulation (BMAS'97),
Arlington, Vlrginia., October 20-27, 1997.

[8] Raghavan, R". Build,i.ng Interactiue Graphical Appli,cati,ons Usi,ng C++ i,n

AppLi,cat'tons of Object-Ori,ented Programming ed. Pinson L. and Weiner
R.. Addison-Wesley, Reading, N4ass., 1990,

[9] Somrnerlad,P. Seff-aware SoJtware: Understand and Bui,ld Reflectiue
Architectures Proceedings of OOi)SLA 97, 1997.

[10] Walker, I. A Srnalltalk/V VLil CAD Appli,catzon Computer-Aided
Engineering Jr-rurna1, April i991, vol. B, no. 2, p.47-53, 1997.

76


