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ABSTRACT
Physical computing involves the use of small electronic devices such as single-board computers as

learning tools. These devices can be used across many mobile contexts, including environmental
monitoring through external sensors. This paper explores a learning design for an activity that uses the
micro:bit, a single board computer designed for educational use, to connect a network of sensors and
data receivers to create an Internet of Things architecture for environmental monitoring. To provide
an authentic context for the learning, the learning design involves the use of environmental sensors to
monitor the state of the students’ learning environments. The learning activity includes the gathering
of data by deploying sensors across different locations and the crowdsourcing of that data with other
learners via the Web to support data analysis across different contexts. From a pedagogical perspective,
these mobile learning activities provide an opportunity for situated cognition using tools, collaboration,
and a cognitive apprenticeship process, which provides the sequencing of the learning design from
situated activity to generality. The TPACK framework is used to integrate the technology component
into the pedagogical scaffolding.

Keywords: physical computing; micro:bit; Internet of Things; situated cognition; TPACK;
crowdsourcing.

1. INTRODUCTION

Physical computing involves the use of portable single-board computers such as the micro:bit, Arduino
and Raspberry Pi as learning tools. A single-board computer (SBC) is a complete computer system
built on a single, small circuit board, containing the essential components of a computer - processor,
memory, storage, and input/output channels. Being small and light, they are highly portable and can
be embedded in larger systems. Depending on how they are applied, they can be useful components in
mobile learning scenarios. This is a technical/theoretical paper that describes a learning design for a
physical computing environment. It outlines the intended learning outcomes and how they are met in
a learning activity that explores a process of crowdsourcing environmental data gathered from the
students’ learning environments using small Internet of Things (IoT) networks. It describes the
technology required and how it can be used at each stage of the learning design. This includes
micro:bits and external sensors, example code for each step of the process, and a dedicated web app
that has been created to enable students to crowdsource and visualise data. Examples of the technology
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in use are included in this article to illustrate some of the activities in the learning design.

The article is structured as follows. The remainder of this introduction provides more detail about
single-board computers, micro:bits, and using loT and crowdsourcing in a learning environment. The
next section describes the learning design using the TPACK framework, using situated cognition as
the pedagogical component. The three main stages of the learning process are then illustrated using
the process of cognitive apprenticeship to scaffold the learning. This is followed by some conclusions
and a discussion of limitations and future work.

1.1 Single Board Computers

Single Board Computers (SBCs) can be coded in various ways to be usable across many mobile
contexts. For example, they can be used as stand-alone devices to create simple digital tools such as
step counters or compasses. In addition, they can be connected either physically or wirelessly to other
devices, for example, they can be used as remote Bluetooth controllers or participate in publish-
subscribe radio networks and be connected to a range of different types of sensors. Gathering
atmospheric data that can be crowdsourced for analysis is one example of the value of such sensors
(Budde, 2021). The combination of communication channels and sensors provides students with many
opportunities for scientific discovery and related mathematical skills. For example, SBCs have proved
effective in a range of project-based learning activities in the secondary classroom (Steinmeyer, 2015).

1.2 The micro:bit

The micro:bit is a popular SBC, being both affordable and specifically designed for educational use.
It provides an LED display, input buttons, radio and Bluetooth connections, USB and battery sockets,
and some onboard sensors: light, temperature, direction (compass), acceleration and, from version 2,
touch, and sound. The onboard sensors are a key component of the micro:bit’s design. The intention
was to enable learners to engage creatively with the device and explore a world where sensor-based
devices are ubiquitous (Knowles et al., 2018). In addition, a range of external sensors can be connected
to a micro:bit using various combinations of external connections (pins) on the edge connector of the
board. The micro:bit is prevalent in many classrooms, particularly in the UK, where a million middle
school students were given one in 2016 (Ball et al., 2016). A similar exercise took place in 2023 when
class sets of 30 version 2 micro:bits were offered to all UK primary schools (BBC, n.d.).

1.3 Learning with the Internet of Things

Integrating the Internet of Things (IoT) into education is a topic that has been previously explored
from a range of perspectives. Many examples focus on the technical aspects of loT networks, but they
have also been used across other subject areas, including science, languages, physical education, and
business (Kassab et al., 2019). The benefits of learning in an IoT environment have been claimed to
include raising awareness about sustainability and ethics (Zeinab et al., 2022), but perhaps the broadest
motivation is to expose students to ubiquitous devices that can be of benefit to everyone (Richards &
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Woodthorpe, 2009).

micro: bits were designed from the beginning as a means of learning about the Internet of Things (IoT)
but since they do not have on-board Internet connections, other components are needed to enable them
to become true [oT components, for example by connecting Wi-Fi expansion boards or linking them
with internet-enabled devices such as Raspberry Pis or laptop/desktop computers.

1.4 Mobile Crowdsourcing

Crowdsourcing has previously been used for learning about [oT (Hussein et al., 2019), but the learning
design in this article is focused on learning through crowdsourcing using [oT as a platform. Further,
this activity is based on mobile crowdsourcing. The main characteristics of mobile crowdsourcing are
the mobility of devices and their carriers, collaboration through distribution of tasks to achieve a global
objective, and human capacity, where individuals are data consumers and producers, and their
capabilities enhance the performance of the overall system (Kong et al., 2019). The mobile aspect is
important in this learning design because of the element of physical computing in the intended learning
experience.

2. THE LEARNING DESIGN AND TPACK

The introduction to this article has described the single board computer as a device suitable for
learning, the micro:bit as an educational SBC, and the Internet of Things as a platform to support the
mobile crowdsourcing of data gathered from sensors. The learning activity design outlined in this
section integrates micro:bits, the [oT, sensor data and crowdsourcing in ways that enhance student
learning beyond just the technical content of electronics and coding. At the end of this learning activity,
the learner should be able to:
1. Explain the impact of environmental factors on learning spaces,
2. Implement a system of mobile sensors that can gather data from the environment,
3. Demonstrate an understanding of the meaning of data gathered and the parameters of data
gathering,
4. Analyse environmental data to draw conclusions about the impacts and mitigations of
environmental factors.

To ensure that the activity design has an appropriate pedagogy, the concept of cognitive
apprenticeship, from situated cognition theory, has been used to scaffold the learning process (Brown
et al., 1989), while the TPACK framework has been applied to integrate the technology with the
content and pedagogy (Koehler et al., 2012). This is described in detail in the remainder of this section.
This learning design has been developed from a previous series of workshops that prototyped the first
two stages of the activity and established some design principles (Parsons & MacCallum, 2022).

2.1 Applying TPACK

Although there are many ways of applying a framework such as TPACK (Technological Pedagogical
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Content Knowledge), assessing its impact on practice relies on observation of performance and
assessment (Koehler et al., 2012). In addition, the complexity of TPACK (with its seven knowledge
constructs) and its emphasis on the technology part of the Pedagogy / Content / Technology triad,
means that applying it effectively of necessity means focusing on the PCK (Pedagogy Content
Knowledge) supported by the technology (Brantley-Dias & Ertmer, 2014). This is challenging in a
situation where technology is a significant component of the learning environment. Previous research
into teacher practice when using micro:bits for learning suggests that demonstrations, collaborative
work and guided discovery are widely seen as relevant approaches to learning through physical
computing. However, teachers are often not able to fully meet their intentions when working with these
devices and do not always deliver learning activities that take full advantage of tactile feedback
experiences (Kalelioglu & Sentance, 2020). Learning with single-board computers, such as the
micro:bit, often focuses on the technology, but lacks a coherent educational approach (Ariza & Baez,
2022).

The learning design outlined in this paper attempts to address these shortcomings by providing a more
structured theoretical basis for the learning process. The use of technology is driven by content that is
authentic within the students’ own learning environment, and the pedagogy is based on cognitive
apprenticeship, where the role of the technology is to represent generalised concepts of the learning
content and the learning activities with that technology follow the apprenticeship pathway.

2.2 The Content Knowledge in the Learning Design

In the learning design, the content is based on issues related to the physical classroom environment,
which have been brought to the fore in recent discussions about the safety of students at school during
the COVID-19 pandemic. For example, ventilation levels can be measured by monitoring CO2
concentrations, which can also have a direct impact on student well-being, as do a range of other
environmental factors. This learning design aims to give students an opportunity to learn about their
own environments while gaining a deeper understanding of the importance of environmental factors
for their own well-being.

Many previous studies have explored the impact of different environmental factors in the classroom.
These have included lighting, temperature, and humidity (Runathong et al., 2017; Lakshaga Jyothi &
Shanmugasundaram, 2021). Several studies have monitored levels of CO2 in classrooms and their
potential impacts (Shendell et al., 2004; Gaihre et al., 2014). To successfully use environmental sensors
as part of the learning process students must gain a proper understanding of what the sensor data means
and how it is used. They need to be able to understand how code and components work together as a
feedback system to produce the desired outcomes (Cederqvist, 2022). In addition to this theoretical
and technical content, students should be able to gather their own data, share it, analyse it, consider its
implications and mitigations, and thereby contribute to their own content knowledge.

2.3 The Pedagogical Knowledge in the Learning Design

Cognitive apprenticeship, as embodied in the theory of situated cognition, structures the progress of
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learners from embedded activities to general principles (Brown et al., 1989). This sequence begins
with apprenticeship and coaching, where educators provide modelling and scaffolding for students to
get started in authentic activities. This is followed by a more autonomous phase of collaborative
learning, with learners experiencing multiple roles and practices, which leads to them articulating and
reflecting on strategies. From this situated understanding, the students’ conceptual knowledge can be
generalised and further developed (Figure 1).

apprenticeship collaboration reflection

World / Activity — Generality

coaching multiple practice articulation

Figure 1. The process of cognitive apprenticeship (adapted from Brown et al., 1989)

These three apprenticeship stages in the pedagogy map to the development steps in content and
technological knowledge. First, students gain an understanding of the impacts of various
environmental factors in their own learning spaces, and technical content knowledge about how to use
micro:bits and sensors to gather environmental data. Then, collaboratively, they gain knowledge from
multiple perspectives by exploring their repertoire of data-gathering tools and gain a deeper
understanding of this data through reflection. Finally, through a crowdsourcing process they can reflect
on multiple sources of data and articulate possible solutions to environmental problems.

2.4 The Technological Knowledge in the Learning Design

To access the content knowledge in the learning process, students need to develop technical knowledge
about the hardware and software that is used during the learning. In this case, the hardware is the
micro:bit and a range of external sensors, and the software comprises the Microsoft MakeCode Editor
and a PHP-based web application. In summary, during the learning activity, students will develop
technological knowledge of coding the micro:bit, using its internal sensors, connecting external
sensors and gathering data from them, sending data via radio between micro:bits, sending serial data
from a micro:bit to the MakeCode editor via USB, monitoring and saving sensor data, uploading it to
a server and accessing multiple crowdsourced files and visualisations using a web app.

3. THE STEPS IN THE LEARNING ACTIVITY

The learning activity is divided into three steps, each of which is based on one stage of the cognitive
apprenticeship. Each step relates to a pair of features of the apprenticeship process. In this section, the
content, pedagogy, and technology that relate to these steps are described.

3.1 Step 1

Content: Using sensors to measure the environment. Foundational content knowledge about
environmental factors and their impacts is provided, along with applied knowledge of using the
hardware and software.
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Pedagogy: The first phase of cognitive apprenticeship is based on coaching, where in situ modelling
and scaffolding are provided for students to get started in an authentic activity, and apprenticeship,
where learning is embedded in authentic activities that make deliberate use of the social and physical
context. These are embodied in this step of the learning activity as follows:
e (Coaching - scaffolded instructions and explanations are given, and the technology is
demonstrated.
e Apprenticeship - Students code their own devices and use them to explore their environment,
making links between data and context.
Technology: micro:bits and coding in the MakeCode editor.
Figure 2 shows the technology components used for this step in the cognitive apprenticeship learning
process. While connected to the MakeCode editor on a computer, micro:bits are coded by the students
to receive data directly from their own internal sensors. They can then experience mobile data
gathering by disconnecting the micro:bits and using them in different parts of the environment to
measure factors such as sound, light, and temperature.

usB
connection

Internal sensor

MakeCode Editor on
Computer

micro:bit

micro:bit

Figure 2. The technology engaged in the first learning step - micro:bits and their internal
sensors

3.2 Step 2

Content: Gathering and visualising data from environmental sensors. Students learn about different
types of environmental measures and their meanings. They extend their technical knowledge and skills,
learning how to remotely capture a stream of sensor data, while critically thinking about solving
problems collaboratively.
Pedagogy: The second phase of cognitive apprenticeship is based on collaboration and multiple
practice. When collaborating, students engage in collective problem-solving, understanding the many
different roles needed for a task, confronting ineffective strategies and misconceptions, and gaining
collaborative work skills. In multiple practice, students can compare multiple performances, leading
to mastery learning. These are embodied in this step of the learning activity as follows:
e Collaboration: Students are given group challenges with additional technical layers, needing to
problem-solve independently
e Multiple practice - students revisit their devices and code and use them in enhanced ways,
further developing their skills.

Technology: micro:bits and external sensors forming a small IoT network, data gathering and
visualisation in the MakeCode editor, and exporting data to files for analysis. Figure 3 shows the
technology components used for this second step in the cognitive apprenticeship learning process.
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A micro:bit network is set up where multiple micro:bits receive sensor data (either directly through
their own sensors or via serial input from external sensors), and then broadcast that data over a radio
channel to a micro:bit that is connected to a computer via USB. Data sent from the receiving micro:bit
to the computer can be captured locally from the MakeCode editor either as a CSV file or a text file.

Radio
signals

micro:bit &

Serial connection

MakeCode
Data Visualiser
on Computer

micro:bit

USB serial connection for *

Extenal sensor data upload CSV/ TXT data export

Figure 3. The technology engaged in the second learning step - an IoT architecture of
micro:bits with external sensors

The test environment used for developing this step included a range of external sensors, including
light, sound, temperature, pressure, humidity, and CO2. For most of these measures, there is more than
one sensor available so students can compare values for consistency. The external sensor boards used
in the test environment are shown in Table 1. Each sensor board can measure more than one
environmental variable. Several boards have MakeCode extensions that make coding easier for
learners to program them for use in their own environments. It is worth noting that sensors for sound
and light return values that are on arbitrary scales and are therefore only relative, for example, sound
sensors are just noise sensors that can, for example, respond to a clap. In contrast, sensors for CO2,
temperature, humidity, and pressure all return values that relate to standard measures and can therefore
be compared across different devices.

Table 1. External sensors used with the micro:bit

Sensor Board Sensors MakeCode Notes
Extension
MonkMakes C02, temperature, humidity Yes Has its own power supply
COZIR sensor
MonkMakes C02, temperature No The temperature sensor is used to support the
. ) C02 sensor but can also be used separately

air quality
sensor

Temperature, light, sound Light and sound levels are measured between
MonkMakes Yes

0 and 100

sensor board

Temperature, pressure, . . . .
Pimoroni humiii : P Yes The micro:bit plugs directly into the board.
enviro:bit Y Light level is measured between 0 and 255

light (including red, green,

and blue levels), sound and sound level between 0 and +-344
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Figure 4 shows an example of micro:bit sensor data being gathered in the MakeCode editor. In this
case, a temperature sensor is being used to gather data, which is sent as a serial data stream over a USB
connection to the editor. As can be seen in Figure 4, the editor displays the data as text and as a
visualisation. However, these representations are ephemeral, so to be able to make further use of the
data it needs to be saved to a file so it can be processed elsewhere. The buttons on the right side of the
screen allow the data to be downloaded either as a text or CSV file (a comma-separated file that can
be read by spreadsheet software such as Microsoft Excel and Google Sheets). In Step 3 of the learning
design, students take CSV files created in this way and share them in a web application designed for
this activity.

B Micosot @ microibit

e QI

Figure 4. micro:bit sensor data being gathered in the MakeCode editor

3.3 Step 3
Content: Mobile crowdsourcing and analysing data from environmental sensors. Students learn about
how to best collect data and apply metadata, share, and analyse large data sets, interpret visualisations,
and potentially draw conclusions about how to manage the classroom environment.
Pedagogy: The third phase of cognitive apprenticeship is based on articulation, where students
articulate strategies so they can be discussed and reflected upon, and reflection, where students reflect
upon, evaluate, and validate the collaborative activities and the performances and roles within them.
These are embodied in this step of the learning activity as follows:
e Articulation: Students collectively articulate their strategies for data gathering, sharing, and
analysis.
e Reflection: Students reflect upon what happened during their collaborative activities and the
outcomes. They consider future actions resulting from their learning.
Technology: web-based crowdsourcing and collaborative data analysis.
Figure 5 shows the technology components used for this final step in the cognitive apprenticeship
learning process. Data captured in the previous step can be shared as CSV files using a dedicated web
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app. This app supports the crowdsourcing of data from multiple locations. Students can then access
this data to visualise it or download it to perform their own analyses.

Sj:)/a?jata » Wab-Basad > Combined data files /

Application visualisations / download

Figure 5. The technology engaged in the third learning step - crowdsourcing data.

Figure 6 shows the upload page of the Web application. Students can upload their CSV files to the

server and add some metadata about where and when their measures were taken, and what
environmental variable the measures relate to.

LEARNING WITH SENSORS

On this page you can upload a CSV file of your sensor data to our repositoty where it can be shared with othr students

Please make sure to fill in the required details and upload the correct type of file (you can download a CSV file of your sensor data from the button on the top right of the MakeCode editor)

Upload your CSYV file (saved from the MakeCode editor) here

Where was this data gathered? [North Shore School, Aucklan|

What did this data measure? [Tempe

When were these measures taken? [01/05/2022 10

[[Choose File | output csv

[Upload |

Figure 5. The upload page of the web application where students can share their data.

Once files have been uploaded, they can be viewed, downloaded, or visualised by anyone as a
crowdsourced data set. Figure 6 shows the page that lists the available data files. Clicking on a filename
will download a file and clicking on ‘View Graph’ will generate a line graph from that file’s data.

UPLOADED FILES

The page lists all the files that have been uploaded to the server.

Click on a filename to download any file, or click on 'View Graph' to see a line graph visualisation of the data
File List

File Name Size Last Modified
4 1_37dc44 1.csv

194 bytes 2023-05-23 01:58:21
61 4 145f0 4 csv

View Graph
184 bytes 2023-06-01 11:54:23

View Graph

Figure 6. The file list page where students can download or visualise files.
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As an example of the type of web-based visualisation possible in the activity, Figure 7 shows a short
temperature trace gathered from an external micro:bit sensor over a period of 90 seconds, with
measures taken at 5-second intervals, displayed using the ‘View Graph’ option on the web app page
that aggregates multiple data sets.

SHOW GRAPH

The page shows a line graph visualisation of the data

Graph

Displaying graph for file: 1684803501_37dc4474355dab71.csv

[ temp
24

23

temp
~N
3

20

18
00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55 01:00 01:05 01:10 01:15 01:20 01:25 01:30

time

Figure 7. An example visualisation of micro:bit sensor data uploaded to a web app.

4. SUMMARY AND CONCLUSIONS

This article has presented a learning activity design based on students exploring the potential of using
physical computing in the classroom, with a particular focus on investigating environmental factors
that can be monitored by sensors connected to single-board computers (the micro:bit in this case). The
design of the activity was structured within the TPACK framework and grounded in the process of
cognitive apprenticeship. Taking the process of cognitive apprenticeship as outlined in Figure 1 and
overlaying the activities from the three steps outlined in the previous section, the mapping of the
learning design to the underlying cognitive apprenticeship process is shown in Figure 8.
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Figure 8. The process of cognitive apprenticeship as embodied in the learning design

This learning activity maps closely to Kong et al’s (2019) definition of mobile crowdsourcing because
of the mobility of the sensors, the collaborative component of the pedagogy, and the learning tasks of
producing and consuming data. Mobile crowdsourcing can have a range of different characteristics
(Kong et al., 2019) that can be identified in the final step of the learning activity. It is participatory
(data and metadata is submitted consciously), both audience-driven (participants are at the centre) and
location-driven (focusing on a particular place), involves both sensing and analytical tasks, and
contributions are homogeneous (combined and equally weighted).

Learning activities such as the one described in this paper can provide students with an opportunity to
use small mobile, electronic devices for real-world learning with opportunities to develop skills in
digital technologies, data analysis, and real-world problem-solving. By taking account of the need to
balance technology, pedagogy, and content within the TPACK framework, and applying a suitable
pedagogy based on situated cognition, the design seeks to ensure that the technology content does not
dominate the learning.

4.1 Limitations and Future Work

The work reported in this article is only design-based and has not been empirically validated. However,
it was informed by previous research in a similar area and builds on the outcomes from that work. It
is therefore the next step in an ongoing effort to explore the potential of physical computing in mobile
learning. As a technical study that can inform ways in which to design physical computing experiences
in a specific domain of knowledge, it provides some insights into designing the learner experience that
will be valuable going forward. The web application that has been developed to support the activity is
also rudimentary at this stage and would need more development to be suitable for deployment on a
public server for use by large numbers of students but is sufficient for small workshop use.
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