
Domain driven web applications made simple

IIMS Seminar March 21st 2012
Associate Professor David Parsons

 The „Naked Objects‟ pattern was originally
described by Richard Pawson in his PhD
thesis
◦ Based on earlier work on „Expressive Systems‟

 3 principles:
1. Business logic should be encapsulated in domain

objects
2. The user interface should be a direct

representation of the domain objects
3. The user interface should be automatically

generated from the definition of the domain
objects

2

 A faster development cycle
◦ There are fewer layers of code to develop

 Greater agility
◦ Easier to accommodate future changes in business

requirements

 A more empowering style of user interface
◦ Direct interaction with the domain

 Easier requirements analysis
◦ Common domain understanding

3

“an expressive
system has a „make
it so‟ button”

◦ - Richard Pawson

4

 As 1960s high level languages?

 As 1970s rapid application development?

 As 1980s 4GLs?

 As 1990s visual programming?

 As 2000s web frameworks?

5

6

 Isn‟t what it
used to be…

7

 A whole bunch of web apps are basically just
create/read/update/delete (CRUD)
◦ Facebook

◦ Twitter

◦ On-line banking

◦ Google Docs

◦ YouTube

◦ Flickr

◦ …

 I could go on, you get the point…

8

 A simple CRUD application involves four
views for each domain concept
◦ Creating
◦ Editing (update/delete)
◦ Listing many items (read)
◦ Showing single item details (read)

 n entities = 4*n pages
 These views are all very much the same apart

from the fields being exposed
 Useful if a framework can build these views

automatically

9

 Over the last decade or so, the naked objects
pattern has appeared in a number of tools

 Grails (a Groovy web framework) is one of
these….

10

 A dynamic language, compiled to Java
bytecode, to run on a Java virtual machine

 Uses a Java-like syntax

 Interoperates with other Java code and
libraries

 Most Java code is also syntactically valid
Groovy

 Groovy implicitly generates data access
operations on domain objects

11

 Grails (formerly Groovy on Rails) is an open
source web framework built on Spring using
the Groovy language
◦ Spring is a Java web framework that uses other

frameworks

 Grails takes its architectural style from Ruby
on Rails

 You can also find this style in other tools
such as Scala Lift

12

 Grails includes everything you need

 Integrates several common libraries and
frameworks

 Developers can focus on business logic rather
than integration

 You don‟t have to manually glue all the
different components together

13

 Grails is based on Spring in order to reuse
some core services

 Spring uses dependency Injection, a specific
type of Inversion of Control

 The framework can inject capabilities into
objects that follow certain rules of coding

 Think of it as being like different lightbulbs
that have the same fitting

14

 Execution of repetitive tasks by the
framework

 Use of scaffolding

 The framework generates artifacts related to
repetitive tasks
◦ views and controllers

 Repetitive tasks are gone

 Developer customizes the artifacts

15

 You don‟t need configuration files if
everything is in place

 Grails stipulates conventions that make
configuration files unnecessary
◦ e.g. every controller is stored in a specific directory

 Probably the only configuration file you‟ll
need will be the one which is for database
access

16

 The Boating Lake Management System
◦ Captain Bob runs a business hiring out rowing

boats on boating lakes
◦ He wants a system to help him manage his thriving

business
◦ Two of the key concepts in the system are Rowing

Boat and Lake
◦ There is a one to many relationship between them

(one lake can have many rowing boats)

 Demo uses the SpringSource Toolsuite for
Grails development

17

 This is a domain class

 We add a few properties and a relationship (to
one other object)

18

 This is also a domain class

 Again we add a few properties and a
relationship (to many other objects)

19

 e.g. for the Rowing Boat

 To make the controller and views dynamic,
use a scaffold in the controllers

20

 Web app to go
◦ („prod run-app‟ would also persist the data in the

database)

21

 Easy to add validation, field ordering and
visibility, formatting, style sheets etc.

 Most tasks driven from within the domain
objects

 For further info see http://grails.org/

22

http://grails.org/
http://grails.org/
http://grails.org/

