
Coderetreats: Reflective 

Practice and the Game of Life 

Associate Professor David Parsons 

Massey University, Auckland 

 

Research seminar presentation, University of 

Canterbury, Christchurch, May 2014 



Coderetreats 

• A day spent with other software 

developers, addressing a single 

problem over and over again with 

different partners and with different 

design constraints 



My Research 

• Run coderetreats 

• Gather data: 

– Code 

– Survey responses 

• Analyse: 

– Evidence for reflective practice 

– Evidence for skills development 

– Ideas for change 



Reflective Practice 

• How can software engineers improve 

their skills and techniques 

• How do they rehearse and reflect on 

their craft? 

• What are the ‘scales and studies’ of 

software? 



Code Katas 

• Dave Thomas (and a Kat?) 

http://codekata.com/ 

http://codekata.com/


Coderetreat Web Site 

• Gary Bernhardt, Patrick Welsh, Nayan 

Hajratwala and Corey Haines 

http://coderetreat.org/ 

http://coderetreat.org/


Design Fundamentals 

• Coderetreats are about ‘Practicing the 

basic principles of modular and object-

oriented design’ 

– Tests drive the code (TDD) 

– Duplication is removed (refactoring) 

– All the requirements are expressed 

(cohesion, self-documenting code) 

– Code contains no unnecessary features 

(YAGNI) 
Based on the XP simplicity rules: 

http://c2.com/cgi/wiki?XpSimplicityRules 

http://c2.com/cgi/wiki?XpSimplicityRules
http://c2.com/cgi/wiki?XpSimplicityRules


Coderetreat Structure 

• The kata is Conway’s Game of Life 

• Five or six 45 minute coding sessions 

• Pair-programming and TDD 

• After each session, code is deleted and 

partners  swapped 

• No expectation that a complete 

solution will be written in any session 

• Different constraints can be applied 

 



What Do They Offer? 

• Changing problem settings 

• Cycles of experience and reflection in 

action 

• Reflective conversions with, and 

learning from, others 

• Deliberate practice, not just doing what 

we are already good at 

• Innovation and exploration 



Game of Life Simulation 

• Cells exist in a conceptually infinite 

two-dimensional grid 

• A cell is something that has a binary 

state 

– life or death 



Initial States and Generations 

• At the beginning of the simulation, 

each cell must be initialized as either 

alive or dead 

• In each subsequent generation, it will 

either: 

– Remain in its current state  

• or  

– Transition to its other possible state 



State Transitions 

• State transitions depend on the states 

of eight neighbouring cells 

• There are four rules to these 

transitions 

1. Underpopulation 

2. Next generation 

3. Overcrowding 

4. Reproduction 



Underpopulation 

• A live cell with fewer than two live 

neighbours dies 



Next Generation 

• A live cell with two or three live 

neighbours lives on 



Overcrowding 

• A live cell with more than three live 

neighbours dies 



Reproduction 

• A dead cell with exactly three live 

neighbours becomes alive 



Conway’s Game of Life 

• Some examples of generational 

patterns (from Wikipedia) 



Our Study 

• Designed to: 

– Explore how a coderetreat supports 

reflective practice 

– Gather empirical data on how code 

creation evolves in a coderetreat 

– Gather survey data on programmer 

practice and experience in a coderetreat 



Experimental Setting 

• 36 final-year undergraduates taking a 

course in software architecture 

• Participated in a coderetreat as part of 

their lab practice 

• Coding in Visual Studio (C# or VB.NET) 

• Standard 5 session coderetreat 

structure 

• Common constraints applied in 

sessions 2-5 



Session Constraints 

1. No constraints 

2. ‘ping-pong’ 

– roles are swapped within pairs 

3. ‘mute’ 

– silent pairing 

4. ‘no arrays’ 

– forces a new approach to existing design 

5. ‘new requirement (track generations)’ 

– requires new design features 



Measuring Reflective Practice 

• From previous work: 

– Instances of events 

– Time spent on activities 

– Use of resources 

– Direct feedback (forum access and posts) 

– Relative time spent on activities 

– Recording with software tools 



Metrics and Reflections 

• In our study we decided to: 

– Store and analyse code (software tools) 

– Count tests and assertions (instances of 

events) 

– Measure test quality (use of resources) 

– Compare test frequency (relative time) 

– Surveys (direct feedback) 

 



Code Analysis 

• Quantitative analysis 

– Test case code analysis over the five 

coding sessions 

– Average number of test methods 

– Average number of significant assertions 

•  Qualitative analysis 

– Compared test case code from first and 

final sessions 

– Used the Arrange, Act, Assert (3A) pattern 

as the quality benchmark 



Quantitative Results 

 



Qualitative Results 

• Significant improvement in test quality 

First Session Last Session 

Only half the pairs wrote unit tests 

that had any utility 

All but two of the pairs produced 3A-

compliant test suites  

Of those, only half wrote ‘quality’ 

(3A compliant) tests 

Of those, two-thirds complied with best 

practices  

About a third of all pairs had only 

stubs or meaningless test code 

Around one-fifth still resorted to multiple 

assertions per unit test 

Some could not even create a test 

project 

Only a few included some inconclusive 

tests 



Session Surveys 

• What was the first thing that you tested 

in this session? 

 

• Why did you choose this particular 

test? 

 

• We asked the same questions after 

each of the 5 sessions 



Session Survey Results 

• Test Driven Design adapts to session 

constraints 



Final Survey 

• Designed to find out about self-

reflection in the coderetreat process 

• Some quantitative structured 

questions (e.g. Likert scale) 

• Some qualitative free text responses 



Standard Questions 

• Asked at the end of all coderetreats 

– What, if anything, did you learn today? 

– What, if anything, surprised you today? 

– What, if anything, will you do differently in 

the future? 



What, if anything, did you learn 

today? 

 • ‘More about the TDD process, when to 

write tests, how to problem solve - 

especially under surprise constraints’ 

• ‘I learnt a better understanding of 

starting off programming. I struggle 

with finding where to begin’ 

• ‘How to write tests at all stages of 

code’ 



What, if anything, surprised you 

today? 

• ‘You asked us to write the program 

without arrays :(‘ 

• ‘The no talking challenge was a surprise. 

I was expecting coding difficulties rather 

than communication difficulties’ 

• ‘How many different ways you can do 

the same thing’  

• ‘Finally understanding something this 

semester’ 



What, if anything, will you do 

differently in the future? 

 
• ‘Study more before the retreat’ 

• ‘Test when there is only skeletal/low 

amounts of code’ 

• ‘Look more closely to the problem and 

modularise’ 

• ‘I would sleep more the night before – 

truth’ 



Zimmerman’s Criteria 

• Questions measuring self-judgment 

and self-reaction 

– Mastery 

– Previous performance 

– Normative criteria 

– Collaborative criteria 

– Alignment of poor results with processes 

that can be controlled 



Mastery 

• Only one still felt they were a novice 



Previous Performance 

• All made progress, even the novice 



Normative and Collaborative 

• A realistic assessment of performance 

compared with peers 

• All were comfortable in pair 

programming 

• Only six more comfortable in the role 

of driver 

– May reflect lack of previous experience 



Ordering Causes of Difficulty 

• Aligning processes and results 

• Lack of skills and experience did not appear 

at the top of the list 

• Working with others appeared at the bottom 

Order Difficulty… 

1 In using the test framework 

2 In using the programming language 

3 Due to participant’s lack of skills and/or experience 

4 Caused by the various constraints imposed in the sessions (for 

example, not talking) 

5 In understanding the Game of Life problem 

6 In working with others 



Skills Development 

• The core skill in a coderetreat is writing 

tests 

• The students’ confidence in writing 

tests had improved from an average of 

4.66 (σ = 2.12) to 5.64 (σ = 1.92), on a 

scale of 0 to 10 



Other Comments 

• ‘It’s a good activity as it prepares the 

students’ 

• ‘I was pleasantly surprised by how 

useful it was’ 

• ‘It was really helpful and I enjoyed it a 

lot’ 

• ‘The more we did it the easier it got and 

getting different ideas was good’ 

 



Conclusion 

• The coderetreat revealed positive 

outcomes: 

– Evidence of self-reflection 

– Collaborative effort  

– Improved conceptual understanding  

– Progress toward mastery  



Next Steps 

• Assessing professional practitioners’ 

coderetreats 

• Proposing new ways to enhance the 

value of coderetreats 



Global Day of Coderetreat 2013 

 



GDCR Surveys 

Developed with Jim Hurne (IBM) global 

coordinator 



Responses 

• Final survey: 443 

– On a sample of about 2,200, enough for 

statistical significance with a 5% margin 

of error and 95% confidence 

• Session surveys 

– From 118 (session 1) down to 25 (session 

5) 

– Can be qualitatively coded 

• Currently coding in NVivo 



Work in Progress 

• Demographics 

– Representative 

• Mastery 

– Improves with experience, up to a point… 

• Progress 

– Less for novices  

• Difficulty 

– Constraints for most, but languages for 

the most experienced 



Possible Futures 

• Change first session to provide 

structure 

• Directly address the ‘simple design’ 

concepts 

• Explore legacy coderetreats 



Reference 

• Parsons, D., Mathrani, A., 

Susnjak, T. & Leist, A. (2014). 

Coderetreats: Reflective 

Practice and the Game of Life, 

IEEE Software, 31(4), 58-64. 

 

• First academic publication on 

coderetreats 


