Coderetreats: Reflective
Practice and the Game of Life

Associate Professor David Parsons
Massey University, Auckland

Research seminar presentation, University of
Canterbury, Christchurch, May 2014

Coderetreats

* A day spent with other software
developers, addressing a single
problem over and over again with

different partners and with different
design constraints

My Research

* Run coderetreats

« Gather data:
— Code
— Survey responses
« Analyse:
— Evidence for reflective practice

— Evidence for skills development
— ldeas for change

Reflective Practice

 How can software engineers improve
their skills and techniques

« How do they rehearse and reflect on
their craft?

« What are the ‘scales and studies’ of
software?

Code Katas

 Dave Thomas (and a Kat?)

CodeKata

Because experience
is the only teacher

Archives

PragDave Kata

Recent Posts
CodeKata CodeKata

(

7 Comments) CodeKata: How It Started

Kata, Kumite, Koan, and Dreyfus

How do you get to be a great musician? It helps to

know the theory, and to understand the mechanics of oY Kata01: Supermarket Pricing
AN

your instrument. It helps to have talent. But “# - Kata02: Karate Chop

ultimately, greatness comes from practicing; applying { Kata03: How Big? How Fast?

the theory over and over again, using feedback to get
Kata04: Data Munging
better every time.
Kata05: Bloom Filters
How do you get to be an All-Star sports person?

N Kata06: Anagrams
Obviously fitness and talent help. But the great

22 Kata07: Howd | Do?
athletes spend hours and hours every day, practicing. o
\ Kata08: Conflicting Objectives

http://codekata.com/

http://codekata.com/

Coderetreat Web Site

 Gary Bernhardt, Patrick Welsh, Nayan

Hajratwala and Corey Haines

A
P Coderetreat

)
.

: communh‘y network

EVENTS GROUPS HOSTING FACILITATING MEDIA BLOGS FORUM MY PAGE

About Coderetreat

Coderetreat is a day-long, intensive practice event, focusing on the fundamentals of ABOUT

software development and design. By providing developers the opportunity to take part in

5 i A = About Coderetreat
focused practice, away from the pressures of 'getting things done', the coderetreat format

= About c3f
has proven itself to be a highly effective means of skill improvement. Practicing the basic . Apout Community Network
principles of modular and object-oriented design, developers can improve their ability to = History

write code that minimizes the cost of change over time.

For an in-depth understanding of the philosophy behind a day of coderetreat, please
watch this introduction video.

http://coderetreat.orq/

http://coderetreat.org/

Design Fundamentals

» Coderetreats are about ‘Practicing the
basic principles of modular and object-
oriented design’

— Tests drive the code (TDD)
— Duplication is removed (refactoring)

— All the requirements are expressed
(cohesion, self-documenting code)

— Code contains no unnecessary features
(YAGNI)

Based on the XP simplicity rules:
http://c2.com/cai/wiki?XpSimplicityRules

http://c2.com/cgi/wiki?XpSimplicityRules
http://c2.com/cgi/wiki?XpSimplicityRules

Coderetreat Structure

he kata is Conway’s Game of Life
Five or six 45 minute coding sessions
Pair-programming and TDD

After each session, code Is deleted and
partners swapped

No expectation that a complete
solution will be written in any session

Different constraints can be applied

What Do They Offer?

Changing problem settings

Cycles of experience and reflection In
action

Reflective conversions with, and
earning from, others

Deliberate practice, not just doing what
we are already good at

Innovation and exploration

Game of Life Simulation

* Cells exist in a conceptually infinite
two-dimensional grid

* A cell iIs something that has a binary
state
— life or death

0.

Initial States and Generations

* At the beginning of the simulation,

each cell must be initialized as either
alive or dead

* In each subsequent generation, it will
either:

— Remain in its current state
* Or

— Transition to its other possible state

State Transitions

« State transitions depend on the states
of eight neighbouring cells

 There are four rules to these
transitions
1. Underpopulation
2. Next generation
3. Overcrowding
4. Reproduction

Underpopulation

A live cell with fewer than two live
neighbours dies

Next Generation

A live cell with two or three live
neighbours lives on

» TSR e
0 2 Y 'v # '~ T . 2
o 2 - .
— - - . > S £ . ey e —
y - > 3 v > i f
py 4 Py = R ‘ , f
el o\ X y ; [& &
r-?‘ A # - " - %3
& S B .
jiA " -
< TN . o e &
- &5 o]
TR a5 3
; Wy 4
. ¥
"o b a S
vy .
7=
g ¥ S 4 3
By - : x 3
@ - s ¥
.o b
~ ~ ~ : 2 ¥ i
y y 4 -, . o
y 4 4 . A v } !
. s - 3
e q d
gt 5 ' 5
)
. . . ~ 1]
G I SV
? |
< S

o= wr, N) 1
< . X 1 M
-
¥ 5 3
"4 ‘g S v
% Y/ 7%
_ i B
P P ~ e o :
y y 4 g iy
" g
&
- —
& . . pbenfnes.

Overcrowding

 Alive cell with more than three live
neighbours dies

Reproduction

* A dead cell with exactly three live
neighbours becomes alive

/. Yy . y ‘
i i 4 . 4 i
/. g. ‘/‘

Conway's Game of Life

« Some examples of generational
patterns (from Wikipedia)

- .:1.'::'-

- - HE =
1 T B
EEE NN EN EEE " | N
— =.I I.= H HEEN
E A EEEE Ly
EEE NN BN EEN
g = r
n n

Our Study

* Designed to:

— Explore how a coderetreat supports
reflective practice

— Gather empirical data on how code
creation evolves in a coderetreat

— Gather survey data on programmer
practice and experience in a coderetreat

Experimental Setting

36 final-year undergraduates taking a
course in software architecture

Participated Iin a coderetreat as part of
their lab practice

Coding in Visual Studio (C# or VB.NET)

Standard 5 session coderetreat
structure

Common constraints applied in
sessions 2-5

Session Constraints

1. No constraints

2. ‘ping-pong’
—roles are swapped within pairs
3. ‘mute’

— silent pairing
4. ‘no arrays’
— forces a new approach to existing design

5. ‘new requirement (track generations)’
—requires new design features

Measuring Reflective Practice

 From previous work:
— Instances of events
— Time spent on activities
— Use of resources
— Direct feedback (forum access and posts)
— Relative time spent on activities
— Recording with software tools

Metrics and Reflections

* In our study we decided to:
— Store and analyse code (software tools)

— Count tests and assertions (instances of
events)

— Measure test quality (use of resources)
— Compare test frequency (relative time)
— Surveys (direct feedback)

Code Analysis

« Quantitative analysis

— Test case code analysis over the five
coding sessions

— Average number of test methods
— Average number of significant assertions

* Qualitative analysis

— Compared test case code from first and
final sessions

— Used the Arrange, Act, Assert (3A) pattern
as the quality benchmark

Quantitative Results

Mean No. of tests

7.0

6.0

50

40

3.0

20

1.0

Il No. of assert statements

@ No. of test methods

No constraints

Ping pong

Mute

No arrays

New requirement

1

2

Sessions

3

5

Qualitative Results

* Significant improvement in test quality

Only half the pairs wrote unit tests All but two of the pairs produced 3A-
that had any utility compliant test suites

Of those, only half wrote ‘quality’ Of those, two-thirds complied with best
(3A compliant) tests practices

About a third of all pairs had only Around one-fifth still resorted to multiple
stubs or meaningless test code assertions per unit test

Some could not even create atest Only a few included some inconclusive
project tests

Session Surveys

 What was the first thing that you tested
In this session?

 Why did you choose this particular
test?

 We asked the same questions after
each of the 5 sessions

Session Survey Results

* Test Driven Design adapts to session

constraints

None
2 Ping-pong 2
3 Mute 3
4 No arrays 0
5 Changing 3

requirements

(generation

count)

* A dash in this column indicates that this test wasn't applicable to a specific session constraint.

5

1

The “first test” created by pairs in each session.*

Counting Data
Session Constraint Constructor neighbors Game rules structure* Cell age*
1 5 5 3 0 - -

1

Final Survey

* Designed to find out about self-
reflection in the coderetreat process

« Some quantitative structured
guestions (e.g. Likert scale)

 Some gqualitative free text responses

Standard Questions

« Asked at the end of all coderetreats

— What, If anyt
— What, if anyt

— What, if anyt
the future?

ning, did you learn today?
ning, surprised you today?

ning, will you do differently in

What, if anything, did you learn
today?

 ‘More about the TDD process, when to
write tests, how to problem solve -
especially under surprise constraints’

* ‘I learnt a better understanding of

starting off programming. | struggle
with finding where to begin’

* ‘How to write tests at all stages of
code’

What, If anything, surprised you
today?

* ‘You asked us to write the program
without arrays :(*

* ‘The no talking challenge was a surprise.
| was expecting coding difficulties rather
than communication difficulties’

‘How many different ways you can do
the same thing’

‘Finally understanding something this
semester’

What, if anything, will you do
differently in the future?

‘Study more before the retreat’

‘Test when there is only skeletal/low
amounts of code’

‘Look more closely to the problem and
modularise’

‘Iwould sleep more the night before —
fruth’

Zimmerman’s Criteria

* Questions measuring self-judgment
and self-reaction
— Mastery
— Previous performance
— Normative criteria
— Collaborative criteria

— Alignment of poor results with processes
that can be controlled

Mastery

* Only one still felt they were a novice

20

—
o

No. of responses
—
=

o

=

Novice Basic Intermediate Skilled Expert
Mastery

Previous Performance

* All made progress, even the novice

20

15

10

No. of rsponses

5
0

None Little Some Significant Very significant
Relative performance progress

Normative and Collaborative

* A realistic assessment of performance
compared with peers

* All were comfortable in pair
programming

* Only six more comfortable in the role
of driver

— May reflect lack of previous experience

Ordering Causes of Difficulty

* Aligning processes and results

* Lack of skills and experience did not appear
at the top of the list

 Working with others appeared at the bottom

Difficulty...

In using the test framework

In using the programming language
Due to participant’s lack of skills and/or experience

A W N P

Caused by the various constraints imposed in the sessions (for
example, not talking)

ol

In understanding the Game of Life problem
6 In working with others

Skills Development

 The core skill in a coderetreat Is writing
tests

* The students’ confidence Iin writing
tests had improved from an average of
4.66 (o0 =2.12)to0 5.64 (0 =1.92), on a
scale of 0to 10

Other Comments

‘It’s a good activity as It prepares the
students’

‘I was pleasantly surprised by how
useful it was’

‘It was really helpful and I'enjoyed It a
lot’

‘The more we did it the easier it got and
getting different ideas was good’

Conclusion

 The coderetreat revealed positive
outcomes:

— Evidence of self-reflection

— Collaborative effort

— Improved conceptual understanding
— Progress toward mastery

Next Steps

» Assessing professional practitioners’
coderetreats

* Proposing new ways to enhance the
value of coderetreats

Global Day of Coderetreat 2013

GDCR Surveys

Globel Datf of
Coderetreat

Global Day of Coderetreat Participant Surveys

This set of surveys is part of a research project, with the support of the Global Day of
Coderetreat organizers, to help us investigate the outcomes of coderetreats. By participating
in these surveys you will be contributing to the software development community's efforts to
understand and disseminate best practice.

The surveys are completely anonymous and no information that might identify you
personally is gathered.

At the end of each coding session, we would like you to fill in a simple survey that contains
one question about that session. The same question is asked about every session (up to 6).

At the end of the coderetreat we would like you to fill in a longer survey that asks about the
whole coderetreat. This contains 18 questions and should take around 10 minutes or so to
complete.

None of the questions are compulsory.

If you have any questions or comments about this research project please contact Associate
Professor David Parsons, Massey University, New Zealand.

Email: d.p.parsons@massey.ac.nz
The Survey Links

The links to all the surveys are below:

Developed with Jim Hurne (IBM) global
coordinator

Global Sponsors

Globe Level

BRAINS
Develop with pleasure!

ThoughtWorks'
GitHub

Continent Level

« the world's
leading graph database

Responses

* Final survey: 443

— On a sample of about 2,200, enough for
statistical significance with a 5% margin
of error and 95% confidence

e Session surveys

— From 118 (session 1) down to 25 (session
5)
— Can be qualitatively coded
* Currently coding in NVivo

Work in Progress

 Demographics
— Representative

 Mastery
— Improves with experience, up to a point...

* Progress
— Less for novices
* Difficulty

— Constraints for most, but languages for
the most experienced

Possible Futures

* Change first session to provide
structure

* Directly address the ‘simple design’
concepts

 Explore legacy coderetreats

Reference

REFLECTIVE SOFTWARE ENGINEER

Parsons, D., Mathrani, A.,
Susnjak, T. & Leist, A. (2014).
Coderetreats: Reflective
Practice and the Game of Life,
IEEE Software, 31(4), 58-64.

First academic publication on
coderetreats

Coderetreats:
Reflective
Practice and the
Game of Life

David Parsona, Anuradha Mathrani, Tec Suznjak, and Arno Leist,

Magssy University

Coderetreats—events where software developers
spend a day in an informal yet intellectually challenging
environment to practice their craft—encourage reflective
practice by addressing a single programming problem
with multiple coding partners and design constraints.

An experiment with a group of final-year undergraduates
studying software architecture reveals that coderetreats
provide a context within which multiple aspects of

self reflection and motivation can be developed.

BOFTWARE PRACTITIONERS:
WORK in an indusry rhat’s con-
stantly innovative and challenging,
where the need to lsam contimcusly
and reflect on practice is an essential
prerequisite to the creation of high-
quality software. Howewver, in the
day-to-day activities of their pro-
fession, the freedom to explor new

aspects of theory and pracrice can
e restricted by the demands of pro-
ducing software artifacts for clients.
Developers need to have some way
of honing their craft in pracrice ses-
sions that are free from interruptions
and presures, where mistakes can
be made safely and the same task
can be attempted mulriple times o

2 IEEE SOFTWARE | PUBLISHED BY THE |EEE COMPUTER 8OQCIETY

gain feedback and learn how to im-
prove the solition.

One such approach is the coder-
etreat, as described on rhe codere-
trear.org website. Codererreats are
based on the use of a code kara,
taken from the kata concepr in
martial arts, where the same action
is performed repeatedly in an ef-
fort to improve. A code kata, then,
is a simple programming problem
that can be solved in many different
ways, helping the developer weigh
different design and implementa-
tion oprions (see hrepsficodeloara.
com). Coderetrears build on this
idea further by integrating tech-
miques such as pair programming
and test-driven development { TDD)
within a particular set of practices
and constraints.

A coderetrear follows the ap-
prenriceship partern of a “break-
able toy,”" in which the program-
ming problem itself doesnt play a
central role. The fooms of the activ-
ity is reflection on the fandamentals
of simple modular design, where
tests drive the code, duplication is
removed, all the requirements are
expresmed, and code contains noun-
mnecessary fearres.®

In a coderetreat, a group of devel-
opers gathers rogether, typically on
a weekend, for a day of writing code
for its own sake, to reflect on their
craft and learn from each other. The
typical strucmure of a coderetreat is
as follows:

The code kata to be addressed is
John Conway’s Game of Life.!

There are five or six coding ses-
gions, each lasting 45 mimres,

+ Pair-programming and TDD
will beused.

+ After each szssion, all code mmst
be delered and partners should
be swapped.

48-T4SQ/14/831.00 © 2914 IEES

