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Abstract

This paper describes a new approach to schematic capture for VHDL-AMS that
uses visual polymorphism to represent multiple underlying component models
with a single visual invocation. The proposed idea provides a unified treatment
of component connectivity at the interface point between the analogue and
digital domains at the schematic level whereas the corresponding VHDL-AMS
port definitions reflect the details of the connectivity context.

Introduction

Visual polymorphism in schematic capture for VHDL-AMS [1] is a new idea
derived from the application of object technology to graphical entry systems.
Object technology has been applied to a number of schematic packages, using a
range of tools such as Smalltalk [2], C++ [3] and Object-Oriented Databases [4].
Polymorphism (the ability of different classes of object to respond differently to
a single message) is a key component of object-oriented systems, though its
documentation in the published research is frequently confined to the context
of graphical user interface routines. In this paper, we use the term 'visual
polymorphism' to describe how a single visual representation of a component
may be used to invoke instances of different VHDL-AMS model descriptions,
depending on its context within a mixed mode circuit.

Visual polymorphism

There are several coding techniques that can be described as exhibiting
polymorphism. Cardelli and Wegner [6] classify four types of polymorphism:
coercion, overloading, parametric polymorphism and inclusion polymorphism.
Of these it is the latter form, defined by the object methods in a classification
hierarchy, that is generally regarded as the key characteristic of a truly object-
oriented system. However, what defines each of these as a type of
polymorphism is the role of context in interpreting a symbol. In source code,
the symbols to be interpreted are function names or operators, and the
contexts upon which their behaviour depends are other associated code
elements, be they parameters, data types or object classes. The concept of
visual polymorphism, introduced in this paper, has much in common with
these commonly recognised forms in that once again it is the role of context
that renders a given symbol polymorphic. The symbols are not in this case code
tokens, rather they are the visual representations of electronic circuit
components and their context is connectivity relationships with other
components.
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VHDL-AMS syntax has much in common with class based programming in that
models of components can be defined in terms of both their public interface
and internal behaviour. Such encapsulation allows different implementations to
be tested behind a single interface when instances of these models can be
invoked as discrete objects [7]. There is also the opportunity to apply some
aspects of object-oriented design using aggregation to provide a flexible layered
architecture [8]. However, there is no true object-orientation in the language
because it does not allow either inheritance or polymorphism. This is a
particular problem when modelling mixed mode circuits because different
models of digital components must be explicitly invoked to match the digital or
analogue natures of the other components they connect to. In an object-
oriented system, object behaviours can be overloaded to respond differently in
different contexts in a process invisible to the programmer invoking the object.
In VHDL-AMS, the process must be explicit, with the responsibility on the
programmer to identify which model must be used in a given context.

VHDL-AMS schematic captu.fe with visual polymbrphjsm

In the absence of VHDL-AMS code mechanisms to invisibly invoke different
model definitions depending on context, we can pass this responsibility to the
schematic capture package. Thus visual polymorphism is the interface between
a polymorphic symbol on screen and non-polymorphic invocations of
component models in the generated code.

VHDL-AMS is a superset of VHDL'93 which provides a mechanism for describing
the behaviour of both continuous and discrete components. The visual
polymorphism approach in our schematic capture system provides a unified
treatment of component connectivity at the interface point between the
discrete and continuous worlds whereas the corresponding VHDL-AMS port
definitions reflect the nature of signals depending on their connection context.
Digital components have input and output signals that by default are digital
signals, but change their nature when connected to analogue components. For
example, the phase detector in figure 1 comprises nine Nand gates that are all
by nature digital, but two of them have an analogue input. This is a screen
dump from the VHDL-AMS schematic capture system. VHDL-AMS requires that
these two components be modelled differently from the other 7 that have only
digital inputs. The different models might be given these component
declaration statements in the phase detector architecture:

First, a fully digital model of a Nand gate

COMPONENT NandD -- Nand gate with digital inputs

GENERIC
(
delay: Time := 1 ns;
width: positive := 2 -- number of inputs
)Y;
PORT
(
SIGNAL inp: 1IN bit_vector(width DOWNTO 1); -- input signals
SIGNAL outp: OUT bit -- output signal

1
END COMPONENT NandD;

In contrast, a different model with a different local port clause is needed
whenever some inputs may be analogue, such as this 'NandD_AD" gate.
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COMPONENT NandD_AD -- Nand gate with digital and analogue inputs
GENERIC

(

delay: Time := 1 ns;
AnalogWidth: natural :
DigitalWidth: natural:

-- number of analogue inputs
-- number of digital inputs

(S

);

PORT

( -- analogue inputs:
TERMINAL AnalogInp: electrical_vector (AnalogWidth DOWNTO 1);
-- digital inputs:
SIGNAL DigitalInp: IN bit_vector (DigitalWidth DOWNTO 1);
-- output signal:
SIGNAL outp: OUT bit

); J

END COMPONENT NandD_AD;

This difference in models demands that a writer of VHDL-AMS code must select
the necessary model from a range of possibilities when building a circuit, even
though the components represented are in fact the same. Writing the
architecture for the phase detector involves deciding which of the gates are
‘NandD' models and which are 'NandD_AD"'. ’

This additional task for the circuit designer can be regarded as both tedious
and error prone therefore a software solution would be of benefit. The selection
of appropriate models would then be handled by the software. This is
implemented within the schematic capture system by identifying the natures
of the waveforms received and generated by the components. A single
component object exhibits a form of polymorphism by generating different
VHDL-AMS code depending on the type of model that needs to be invoked.

Like all types of polymorphism, different behaviour of a single type of object is
driven by context. In this application, the different contexts are digital and
analogue domains. Any nodes that connect components in the schematic
capture package can be either digital signal ports or analogue terminals of the
electrical nature depending whether that node carries an analogue or a digital
signal. This difference is then reflected in the architecture definitions of the
components to which the nodes are connected, and this is subject to change as
the circuit design is edited. A node that connects only to digital components is
a digital signal, but if it connects to at least one analogue component then the
entire node becomes an analogue terminal of the electrical nature. Where such
a node connects with a digital component, then the connection to that
component will require the invocation of a different VHDL component
definition. All components have the ability to detect the type of the nodes to
which they connect, and invoke appropriate models when requested to generate
VHDL-AMS code. The first element of the generated source code is the library
context clause list followed by entity declaration. Then the architecture is
defined, in which the necessary models are selected from a component library
and included in the source. Once the models have been identified and loaded
from the library file, the architecture body with component instantiations is
described.

The following source code is generated from the phase detector in figure 1 by
the schematic capture system:
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LIBRARY IEEE, Disciplines, Mixed;

USE IEEE.math_real.ALL;

USE Disciplines.electricalhsystem.ALL;
USE Mixed.polymorphic_package.ALL;

ENTITY PhaseDetector IS
PORT
(
TERMINAL Node9: electrical;
TERMINAL Nodell: electrical;
SIGNAL Node8: bit;
SIGNAL NodelO: bit;
)
END ENTITY PhaseDetector;

ARCHITECTURE Structure OF PhaseDetector IS
SIGNAL Nodel, Node2, Node3, Noded, NodeS5, Node6, Node?7 - bit;
BEGIN
Nandl: NandD GENERIC MAP (d_width => 2)
PORT MAP (bit_vector(Nodel&Nodez), Node3) ;
Nand2: NandD GENERIC MAP (d_width => 2) -
PORT MAP (bit_vector{Node3&Node4}, Node2) ;
Nand3: NandD GENERIC MAP (d_width => 2)
PORT MAP {bit_vector(NodeS&NodeG),'Node?);
Nand4: NandD GENERIC MAP (d_width => 2)
PORT MAP (bit_vector (Noded&Node?), Node5) ;
Nand5: NandD GENERIC MAP (d_width => 3)
PORT MAP {bit_vector{Node3&Node&Node4], Node8) ;
Nandé: NandD_AD GENERIC MAP (a_width => 1, d_width =»> 1)
PORT MAP (electrical_vector(Node9),

bit_vector (Node§), Nodel) ;
Nand7: NandD GENERIC MAP (d_width =»> 3)
PORT MAP (bit_vector{NodeG&Node?&Node4), Nodel0) ;
Nand8: NandD_AD GENERIC MAP (a_width => 1, d_width => 1)
PORT MAP (electrical_vector{Nodell),

bit_vector (Nodel0), Node6) ;
Nand9: NandD GENERIC MAP (d_width => 4)

PORT MAP {bit_vector(Nodeﬁ&Nodel&Node?&Node3), Noded) ;
END ARCHITECTURE PhaseDetector;

As well as identifying the names and types of the connecting nodes, the
schematic capture system can also translate the physical sequence of input
nodes into the logical sequence required by the component models, so that a
NanD_AD gate with both digital and analogue inputs has to have its analogue
inputs provided as parameters before its digital inputs. For example, gates 6
and 8 both have one digital and one analogue input but not in the same
physical order. The schematic capture has automatically put node 1 as the first
parameter to gate 6 to match the underlying model description. This process is
invisible to the designer who can physically connect the inputs in any sequence
without causing erroneous invocations of the underlying component model.
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Figure 1. Phase detector schematic in the VHDL-AMS schematic capture
system.

Conclusion

The schematic capture system described here uses visual polymorphism to
render the design of mixed mode circuits transparent to the end user, in that
only one visual model is placed on the screen. We define the concept of 'visual
polymorphism’ as a single visual representation of a component, which invokes
instances of different VHDL-AMS configurations, depending on its connectivity
context. Visual polymorphism is the interface between a polymorphic symbol
on screen and non-polymorphic VHDL-AMS code describing component models.
It is especially useful in a mixed-signal schematic environment, in which the
natures of analogue and digital ports are implicitly derived from the visual
representation. Since VHDL-AMS has no code mechanisms to invisibly invoke
polymorphic descriptions, we pass this responsibility to the schematic capture
package.
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