
Object oriented schematic capture for

circuit simulation

D. Parsons,̂ T. Kazmierski^

o Southampton Institute of Higher Education, East Park

Terrace, Southampton SO9 4 WW, UK

* University of Southampton, Southampton SO9 5NH, UK

ABSTRACT

The development of an HCI (Human Computer Interface) for circuit
simulation software is an appropriate area for the exploitation of object
technology. This paper describes how an object oriented graphical user
interface is being developed to provide a schematic capture facility for the
Alfa object oriented circuit simulation language.

INTRODUCTION

In approaching the issue of an appropriate paradigm for a schematic capture
interface for circuit simulation, a number of issues are raised. Firstly, few
programmers can approach the writing of any kind of WIMP interface in
the current climate without acknowledging the firm establishment of object
technology in such programming applications. Since the development of
Smalltalk for the Dynabook project at Xerox PARC [1], object technology
has become the norm for graphical interfaces. Secondly, the nature of the
software engine behind the interface must have a bearing on the way in
which the semantics of the interface are designed. In this particular case, the
interface is intended to provide input source code to the Alfa simulator. At
the present time, the link between the interface and the simulator is via
ASCII file, but the potential for closer integration is a factor in attempting
to make the two applications semantically compatible.

 Transactions on Engineering Sciences vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3533

378 Software Applications in Electrical Engineering

The long standing relationship between simulation applications and
object technology is well known, and dates from the development of
Simula67 [2]. It is not within the scope of this paper to discuss the detail of
the simulation language, Alfa, which lies behind the schematic capture
interface, suffice to say that the application of the object oriented paradigm
to its methodology is crucial to its approach. Alfa itself has been
documented elsewhere (Kazmierski, Brown, Nichols & Zwolinski [3]).

In the light of the above, a schematic capture interface for Alfa is
currently under development using C+ + [4]. This is clearly the most
appropriate language to provide compatible links with Alfa, since it is the
language into which Alfa is parsed, and shares much of its syntactical style.
It also has the advantage of providing portable executable code without the
environment overhead of, for example, Smalltalk.

THE CIRCUIT DOMAIN

Unlike many data processing applications, the area of circuit simulation
provides an environment within which the identification of "objects" is
blindingly obvious. This is a great advantage when approaching an
application from an object technology viewpoint. A circuit simulator
interface must be as representative as possible of the physical process of
building the circuit in reality, and a programming paradigm which supports
the one-to-one relationship between real world objects and software entities
has to be advantageous. The circuit domain is comprised of discrete objects,
passing messages between each other. Such a domain appears therefore to
be an application area in which object technology can bear fruit.

ABSTRACTION AND OBJECTS

The abstract data type is an important tool of object technology, allowing
as it does the essence of each object to be represented in a "template" of
attributes and methods. Thus the C+ + "class" acts as an abstract data type
for each object in the system, standardising state attributes and behaviour
methods across a class of objects. When representing electronic circuit
components in software, the object oriented approach allows each
component to be modelled as an abstract data type, linking together a
number of generic characteristics of each component. These include:

1. The visual image of the component on the screen

2. The attributes of each component type (e.g. Resistance for a
resistor)

3. The relationships between the component and other objects in the
circuit

 Transactions on Engineering Sciences vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3533

Software Applications in Electrical Engineering 379

Each specific component object which is dynamically created in the
system is therefore capable, by containing state values for the generic
attributes, of linking together these aspects so that an individual component
is able to display itself on the screen, and also relate its external interfaces
to the interfaces of other components and nodes. By tracing through the
components in the system at any one time, each object is able to contribute
to the Alfa source code which is written to disk by the interface for input
into the Alfa simulator. The data which is required of each component in
the circuit is the ability to report its own unique name, generated when the
object is created, the value(s) of its attribute(s), and the names of
components or nodes to which its external interfaces connect. Nodes are
required only to return their unique names. In both cases, the system creates
unique names by utilising class member functions; one which returns the
generic name of the class (e.g. CAPACITOR, XORGATE etc, and another
which uses a static data member (i.e. only one variable for the whole class,
rather than one per object of the class) to keep a count of how many objects
of the class exist in the system. By combining the name of the class with an
instance counter, a unique object name can be created. For example, the
first capacitor in the system will be called CAPACITOR_1, the second
CAPACITOR 2 and so on. Nodes are named NODE_1, NODE 2 etc. (ref.
Alfa source code, Figure 4).

COMPONENT HIERARCHIES

In addition to the use of abstract data types to model components, object
technology offers the ability to create classification hierarchies of generic
component types. This allows duplication and redundancy of data and
functionality to be eliminated, whilst ensuring consistency of structure. For
example, the several types of resistor need not be modelled entirely
separately if inheritance is utilised. The ordinary resistor can be used as a
base class, from which other types of resistor with additional functionality
may inherit. Therefore we may build on the attributes and functions of the
Resistor class to create Photo-resistors, Thermo-resistors, VDRs or any
other resisting device. Figure 1 below illustrates the principle of the
inheritance hierarchy in terms of the screen images of three resisting
devices. The Photo-resistor and Variable Resistor classes inherit their base
image from the Resistor class, but add additional elements. Internally too,
the attributes of the Resistor class are inherited and built on by the derived
types. Inheritance also allows generic messages to be sent to all objects in
the hierarchy, regardless of their specific class type. When an object is sent
a message, for example, to draw itself on the screen, it knows how to create
its image via a function unique to the class, but with a name shared by all
classes in the hierarchy. In C+ + , such "polymorphic" methods are
facilitated by the use of "virtual" functions.

 Transactions on Engineering Sciences vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3533

380 Software Applications in Electrical Engineering

Resistor

A

PhotoResistor Variable Resistor

Figure 1: An inheritance hierarchy of resistor devices

We may examine how such a hierarchy can be utilised in C + + by
describing how the devices are drawn. Firstly, the Resistor class allows an
object of the class to draw itself on the screen using the drawQ member
function which utilises simple graphics library functions:

void Resistor::drawQ
{

line(x + vect[0], y + vect[l], x + vect[2], y + vect[3]);

// etc....

A photoresistor needs to be shown with the same visual image, but with
the addition of two arrows. Because the Photoresistor class inherits from the
resistor class, the member function drawQ of the base class can be called
from the member function drawQ in the derived class.

void Photoresistor::drawQ

// The base class version of drawQ is called first

Resistor::draw();

// Then the arrows are added

line(x + vect[0], y + vect[l], x + vect[2], y + vect[3]);

// etc....

}

 Transactions on Engineering Sciences vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3533

Software Applications in Electrical Engineering 381

Note that in this case, the array vect[] has been declared as a private
attribute of both the Resistor and Photoresistor classes. Because the array
vectf] is therefore seen separately by the constructors of the two classes,
there is no problem in vect[l] for example being used in two contexts. This
ensures that there is no accidental corruption of data related to the base
class. Other attributes are however inherited without being re-stated, such
as the screen coordinates of the two node connections of the component,
and the resistance value.

By extending the interface, the user may theoretically build further on
the base class to create new types of resistor, sensitive to new external
inputs, or combinations of factors which may be built in to the model. By
using inheritance, only the new behaviour need be modelled, again ensuring
consistency with the base component.

Indeed, we may further exploit the paradigm by introducing "multiple
inheritance", whereby a single class may inherit attributes and methods from
more than one base class. For example, we could create an abstract base
class of a "radiation sensitive component", which would encapsulate generic
radiation (e.g. light) sensitive behaviour, and the arrows which are part of
the objects' visual image. The base class would not be intended for
instantiation, since it is not a specific component, but may provide
individual light sensitive components with generic characteristics and
behaviour. Figure 2 indicates such a hierarchy, with the abstract class not
intended for instantiation (ref single box outline), whereas the other base
classes Diode and Resistor act as both base classes for instances of
Photodiode and Photoresistor, but may also be instantiated in their own
right (ref double box outline). The form of notation used here is loosely
based on the Coad/Yourdon notation [5] in the sense that a distinction is
made between abstract classes (containers for attributes and methods, but
not templates for concrete objects) and those which may be instantiated as
objects. A class which is notated only with a rectangular box is an abstract
class, and does not represent a useable object at that level of the hierarchy.
Boxes which are surrounded by a second, rounded box, represent classes
from which concrete objects may be instantiated. These may or may not be
base classes for further derived classes and objects.

 Transactions on Engineering Sciences vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3533

382 Software Applications in Electrical Engineering

BASE CLASSES

Radiation Resistor

Photodiode Photoresistor

DERIVED CLASSES

Figure 2: A hierarchy of components using multiple inheritance

CONTROL VIA GENERIC CLASSES

In the system, all components inherit from the base class "Component",
which allows a common term of reference for all components in the circuit.
Likewise, "Component" is a derived class of "CircuitObject", from which
the "Wire" class (which allows the creation of circuit nodes) also inherits.
The data and processes of each component are encapsulated in specific
component objects, but the generic component class allows the third element
of a system, control, to be exercised over a collection of various and
disparate components. Components and nodes may be controlled separately
via the classes "Component" and "Wire", but may also be treated as part
of a single hierarchy of "CircuitObjects"

Such an approach is clearly applicable to the system as a whole, given
the appropriateness of object technology to graphical interfaces. Therefore
we see two general areas of hierarchy in the system; one which contains
interface objects such as menus, dialogboxes, windows etc, and another
containing components and the connections between them. Both however
inherit from a simple base class which identifies the locations and visibility
of all screen entities and therefore unifies control over the whole system via
the visual domain.

 Transactions on Engineering Sciences vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3533

Software Applications in Electrical Engineering 383

In addition to the use of abstract data types and inheritance, the interface
also takes advantage of the facilities of run-time polymorphism via dynamic
binding. That is, the system allows component objects to be dynamically
created and destroyed at run time, whilst keeping track of them via linked
lists of pointers. This ensures that polymorphic (virtual) functions can be
called for all components in the circuit via generic component pointers. It
is this mechanism which allows all objects to respond to the same message
(e.g. drawQ) with individual behaviour.

The C++ language provides facilities to instantiate component objects
dynamically as indicated above. This allows total flexibility in the number
and attribute values of components of any type, constrained only by the size
of the addressable memory within which the system can store software
representations of component objects. These dynamic objects may include
objects created dynamically by the user by defining new subclass of
Component or of specific components such as resistors.

Abstract classes play a role in the control of concrete objects in term of
allowing a generic pointer to be used to locate members of all subclasses.
They also play a role in grouping generic attributes from which specific
classes may inherit, whether part of the initial system or created
interactively by the user. There is a limitation to the use of inheritance
which is that it is impossible to remove an inherited attribute from a derived
class, only to mask it. For example, a "private" attribute of a base class is
inherited but not accessible directly by member functions in the derived
class. Private derivation limits the use of inherited elements still further, but
there is no method for simply avoiding the inheritance of unwanted
attributes or methods. To some extent this implies that the granularity of
classes needs to be kept quite small, so that a user-defined type may inherit
as little redundancy as possible.

AN EXAMPLE CIRCUIT

This simple example shows how the schematic capture software allows a
circuit to be drawn on the screen, and generate Alfa source code at will.
Figure 3 shows a screen dump of the interface, containing a schematic for
a simple phase detector.

When the circuit is written to file, each object is first asked to return
its type, and unique name. This provides the "model mainQ" part of the
source code. In the "process flow", each of the declared objects returns its
name, followed by a parameter list. This list varies according to the type of
component, but in general terms it identifies the names of input nodes, the
names of output nodes, and the internal attribute values of the component
(if applicable). In the case of the example in Figure 3, source code is
created as shown in Figure 4.

 Transactions on Engineering Sciences vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3533

384 Software Applications in Electrical Engineering

Main ttanu A 1 fa Schema tic I

I

M#**#e#: Click l«ft button to *mlmct m#nu or drag box |

Figure 3: Screen dump of Alfa Schematic Capture interface, showing a
simple phase detector circuit diagram

model mainO
Esource ESOURCE 2;
Esource ESOURCE 1;
XORGate XORGATE 1;
Resistor RESISTOR 1;
Capacitor CAPACITOR 1;
node NODE_4;
node NODE 3;
node NODE 2;
node NODE 1;

process flow begin
ESOURCE 2(NODE1, Ground, wave2(time));
ESOURCE 1 (NODE 2, Ground, wavel(time));
XORGATE 1 (NODE 1, NODE 2, NODE 3);
RESISTOR 1 (NODE 3, NODE 4, 1);
CAPACITOR 1 (NODE 4, Ground, 100);

end
end model main;

Figure 4: Source code created by Alfa schematic capture interface

 Transactions on Engineering Sciences vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3533

Software Applications in Electrical Engineering 385

The source code, once written, may be used as input to the Alfa
simulator. Each reference to a type name in "model mainQ" (e.g. ESource,
XORGate etc.) instantiates the component from "models" in the Alfa
library, and identifies the names of nodes (also models in the library). A
"model" in Alfa is an abstract data type, similar to the class in C + + . The
syntax itself is still under development and is therefore liable to
modification.

CONCLUSION

The prototype interface demonstrates that the object oriented paradigm is a
powerful tool for the representation in software of electronic circuits. The
ability to reflect a concrete real world entity in a software object,
encapsulating its own identity, behaviour and knowledge of its relationships
with other objects, allows a realistic and robust simulator interface to be
constructed. Potentially, the separation of the invocation of Alfa models,
and the internal workings of the simulator, give great flexibility in extending
the component library, building on existing models to create new devices.
An object in the interface need only interact with other objects via its
external interfaces (connections), with its internal behaviour encapsulated
in an Alfa "model". Ultimately, object technology should be able to provide
a more flexible, intuitive and realistic simulator, via a user-friendly
schematic capture interface, than those generated using other paradigms.

REFERENCES

1. Graham, I. Object Oriented Methods Addison-Wesley, Wokingham,
1991

2. Lamprecht, G. Introduction to Simula67 Vieweg, Braunschweig, 1981

3. Kazmierski, T.J., Brown, A.D., Nichols, K.G. and Zwolinski, M. 'A
General Purpose Network Solving System' IFIP Transactions, VLSI-91 ed.
Halaas, A. and Denyer, P.B., pp. 147-156, North-Holland, Amsterdam,
1992

4. Stroustrup, B. The C+ + Programming Language Addison-Wesley,
Reading, Mass., 1986

5. Coad, P. and Yourdon, E. Object Oriented Design Prentice-Hall 1991

 Transactions on Engineering Sciences vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3533

