
Agile software development methodology, an ontological analysis

David Parsons

Massey University, Auckland, New Zealand

d.p.parsons@massey.ac.nz

Abstract

Agile methods have emerged in recent years as a new

paradigm in software development, promising to free

the process of building software systems from some of

the constraints of more traditional approaches.

However the plethora of overlapping methods makes it

difficult to identify the core features of an agile

approach that transcends any particular method and

provide us with an overarching methodology. This

paper takes an ontological approach to analyzing the

core components of an agile methodology based on an

analysis of existing literature related to agile ontology.

The intent of this ontology is to assist our

understanding of the kernel of software engineering

theory that underlies agile methodology.

.

Keyword(s): agile methods, ontology, software

engineering

1. Introduction
In recent years we have seen a number of different

approaches to bringing software development forward

by applying both new technologies and new

engineering and lifecycle management practices. In

particular, we have seen the emergence of agile

methods as a major new paradigm for the management

of software development projects. In this paper, we

take an ontological approach to an analysis of agile

methods and attempt to identify an overarching

ontology than may help us to understand how various

agile practices may be successfully integrated within a

broader agile methodology.

The mid 1990s saw the emergence of a number of

informal analysis and design approaches that were later

categorized as agile methods [1]. These methods place

emphasis on being flexible to changes in requirements

and working in collaboration with customers and other

stakeholders. However there is evidence that teams

adopting agile methods are unsure about the

relationship between a given method and the set of

techniques and processes that it may or may not

involve [2]. This may be because there are a large

number of agile methods, each specifying a particular

set of techniques, both engineering and managerial, as

opposed to supporting a more general understanding of

what constitutes an agile methodology. Ivar Jacobson

recently stated that we need a theory of software

engineering built around a kernel of software

development [3]. This work is somewhat less ambitious

but addressing the same issue, stated by Jacobson as;

“With the kernel in place all methods can be described

in a uniform way, as specializations or extensions to

this kernel.”

It seems that representation of such a kernel should

be done in a reasonably formalized way. To this end we

utilize ontology as a means of providing this

formalization. The basis of our proposal in this paper is

therefore a general ontology-based representation for

agile methods. This ontology is intended to provide an

analytical model to represent the core relationships

between the various components of agile methods. In

this paper we consider previous work on ontologies for

software development and introduce an ontology for

agile methods, based on an analysis of a number of

published agile methods.

2. Ontologies for software development
In attempting to provide a more formalized way of

analyzing agile methods, one approach that may prove

fruitful is to consider the use of ontologies as an

analytical tool. Some of the literature suggests that

agile methods have an ontology, though as yet this has

not been formally published so is merely implied.

The benefits of an ontology include the ability to

categorize the key components of the entities of interest

and the relationships between them. Ontologies have

been widely explored in software engineering (e.g.

[4],[5],[6],[7]). There have also been a number of

papers relating to application ontologies within specific

agile projects. Mishali and Katz [8] explicitly refer to

an ontology of XP in driving the architecture of their

Eclipse plug-in, though this ontology is not formally

expressed. This plugin supports XP from the

perspective of software process aspects. The aspects

are seen as a way of implementing an ontology that is

semantically congruent with the various practices of

XP. The prototype targets certain practices, such as

enforcing a test first policy.

Clearly there is a relevant body of work that may

contribute to an understanding of agile method

ontologies. So far, however, a more general ontology

of agile methods has not been proposed. The

motivation for this paper, therefore, is to propose some

underpinnings for such an ontology and attempt to map

it to subsets of existing software engineering

ontologies.

It is important to specify why one is attempting to

build, modify or apply an ontology and what kind of

ontology is therefore required. Happel and Seedorf [7]

categorise ontologies using two dimensions, one that

distinguishes development time from run time, and

another that differentiates software and infrastructure.

In this paper we are concerning ourselves with

development time infrastructure, so are focused on

what Happel and Seedorf [7] call „ontology-enabled

development‟ which uses ontologies at development

time to support developers with their tasks. In

attempting to propose an ontology for agile

infrastructure, we are therefore concerning ourselves

with a subset of the possible ontologies that might

apply to software engineering in general.

3. An ontology of agile methods
The relationship between ontologies and agile

methods appears in the literature from time to time. For

example Knublauch [9] suggests that ontology driven

development should be more applied in the agile

domain, and asserts that, with the correct tools,

ontologies can be a powerful support for agile methods,

in particular for generating test methods and supporting

stakeholder involvement. Thus far, however, no single

generic ontology of agile methods has been proposed.

Therefore we have begun to propose such an ontology,

based on an analysis of a number of commonly used

agile methods. We took seven agile methods and

attempted to summarize their terminology, illustrated

with some key examples. Table 1 shows, for each of

the seven methods, key terms used, along with

indicative examples

The purpose of this exercise was to identify the

commonality (or otherwise) of a representative number

of agile methods to explore the viability of building an

ontology that might apply across all agile methods. The

purpose of the examples was to enable us to filter the

Agile Microsoft Solutions Framework

Principles Open communications, empowered

team members, clear accountability

and shared responsibility

Mindsets Focus on Business Value, Teams of

Peers, Internalize Qualities of Service

Agile UP

Phases Inception, elaboration, construction,

transition

Disciplines Model, implementation, test, project

management

Philosophies Simplicity, tool independence

Crystal Clear

Properties Frequent delivery of usable code,

reflective improvement, osmotic

communication

Strategies Incremental Rearchitecture,

Information Radiators.

Techniques Daily Stand-up Meetings, Side-by-

Side Programming, Burn Charts.

DSDM

Principles User involvement, empowered project

team, frequent delivery of products,

testing throughout the project life-

cycle

Techniques Timeboxing, MoSCoW, testing,

workshop

eXtreme Programming (XP)

Values Communication, simplicity, feedback,

courage, respect

Activities Coding, testing, listening, designing

Techniques

Pair programming, test driven

development, continuous integration,

collective code ownership

Feature Driven Development

Activities Plan by feature, design by feature,

build by feature

Best practices Domain object modeling, develop by

feature, individual code ownership,

visibility of progress and results

Scrum

Techniques

Team creation, backlog creation,

project segmentation, scrum meetings,

burn down charts

Phases Review release plans, sprint, sprint

review, closure

Table 1: Key concerns of agile methods

various terms used in the seven methods so that we

could identify synonyms. This approach follows

Happel and Seedorf [7], where their ontology

classification is illustrated by exemplars. Where

synonyms were identified, one term was chosen to

subsume the others. Where possible, the chosen term

was the most commonly used of the synonyms. The

chosen terms were;

 Technique

 Phase

 Principle

o Subsumes property, value

 Activity

o Subsumes discipline

 Practice

o Subsumes mindset, philosophy,

strategy

In general it seems that an agile method will have some

guiding set of principles that underpins its approach. It

will also have high level activities, supported by

management and engineering techniques. These will be

organized under the umbrella of a set of practices.

There may also be the concept of phases within the

overall process. Within the detail of the various

methods, the instantiation of techniques, for example,

may vary widely. Engineering focused methods like

eXtreme Programming (XP) will promote a specific set

of techniques, whereas other methods, such as Scrum,

do not concern themselves so much with engineering

practices as with project management processes.

Common ideas emerge from many methods, including

testing, communication and visibility of progress.

Incompatibilities are few and far between, with

individual code ownership in Feature Driven

Development being one of the few examples,

contrasting with the common code ownership promoted

by most other methods. This however has no impact on

the overall ontology, since these are simply different

instantiations of technique.

From this analysis we built an initial ontology of

agile methods that attempts to encompass the various

characteristics of commonly used methods. This

ontology is shown in Figure 1. In our generic ontology

for agile methods, a software system consists of a set of

features built within activities that are part of a

development process. That process will be guided by

the principles of a particular method. Various

techniques are used to carry out the activities (they will

vary between methods) but these techniques will be

either engineering or management oriented. The

engineering techniques will include spatial

considerations (co-location, pair programming etc.) and

lingual issues (languages and tools). The management

technique may address social issues such as active

stakeholder involvement, sustainable pace and

activities such as stand up meetings and retrospectives.

Figure 1: A generic ontology of agile methods

«is guided

by»

Practice

Phase

Technique

Activity

Agile method

Development

Process

*

«is guided by»

Principle

*

is dictated by 1..*

may consist of

is carried out using 1..*

is used in 1..*

is part of 1..*

consists of 1..*

is carried out

using 1..*

Engineering

Technique

Management

Technique

Feature

addresses 1..*

Software

System

builds

comprises *

Lingual Social Spatial

4. Summary and future work

In this paper we have described an ontology for agile

methods to propose an analytical framework for

understanding how an overarching agile methodology

is constructed. This work is preliminary in nature and

has yet to be exercised by empirical study. However it

represents a first step in formalizing a kernel of agile

software development that may assist us in ensuring

that the relationships between agile practices and

processes are properly understood by practitioners and

may therefore be implemented in an effective way. The

ways in which such an ontology may be used could

include ontology mappings between a chosen method

and the generic ontology, to indicate to what extent a

given method encompasses the overall agile ontology,

and the formalization of support tools for agile

software development.

One of the practical aspects of an ontology is that it

provides a formal specification that may be used in

software tools. Therefore the value of creating a

generic ontology for agile methods is that this ontology

might be leveraged in supporting tools for agile

software development. Tools such as Jena [10] and

Protégé [11] give the opportunity to create ontologies

in various representations such as the Resource

Description Framework (RDF) or Web Ontology

Language (OWL) that could enable the reasoning

capabilities within these tools to be utilized in guiding

the adoption of agile software development techniques.

Future work will address this aspect of ontology, with

the intention of creating such support tools.

References
[1] J. Highsmith, Agile software development

ecosystem, Boston: Addison-Wesley, 2002.

[2] D. Parsons, H. Ryu and R. Lal, R. “The Impact of

Methods and Techniques on Outcomes from Agile

Software Development Projects” in IFIP 8.6

Conference: Organisational Dynamics of

Technology-based Innovation: Diversifying the

Research Agenda, McMaster, Wastell, Ferneley and

DeGross (eds.), Springer, 2007, pp. 235-249.

[3] I. Jacobson, 2009 In need of a theory for

software engineering,

http://ivarblog.com/2009/05/29/in-need-of-a-theory-

for-software-engineering/

[4] B. Marick, “Methodology Work Is Ontology

Work”, ACM SIGPLAN Notices, 39(12) pp. 64 – 72,

2004.

[5] P. Wongthongtham, E. Chang, T. Dillon and I.

Sommerville, “Software engineering ontologies and

their implementation”, in Kobol, P. (ed), IASTED

International Conference on Software Engineering

(SE), pp. 208-213, Innsbruck, Austria, ACTA

Publishing, 2005.

[6] M. Leppänen, Towards an Ontology for

Information Systems Development, Via Nova

Architectura, 2006.

 [7] H. Happel and S. Seedorf, “Applications of

Ontologies in Software Engineering”, Proceedings of

the 1st international conference on Theory and

practice of electronic governance, Macao, China, pp.

5-11, 2007

[8] O. Mishali and S. Katz. “Using Aspects to Support

the Software Process: XP over Eclipse”. Proceedings

of AOSD 06, Bonn, Germany, 2006.

[9] H. Knublauch. “Ramblings on Agile Methodologies

and Ontology-Driven Software Development”,

Workshop on Semantic Web Enabled Software

Engineering, Galway, Ireland, 2005.

[10] Jena – A Semantic Web Framework for Java

http://jena.sourceforge.net/

[11] The Protége Ontology Editor and Knowledge

Acquisition System, http://protege.stanford.edu/

