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Abstract 
There are many different techniques used with agile software development methods. Some of these, such as 
common coding guidelines and test driven development, are widely adopted and there appears to be a 
consensus that they can be beneficial. Others, however, are more controversial, none more so perhaps than pair 
programming. This technique meets resistance both from developers, who do not always wish to program with 
another person, and from managers, who see the sharing of a workstation as a potential barrier to programmer 
productivity. Its supporters, however, claim that it can have many benefits, in particular improving software 
quality. In this paper we look at the outcomes of previous research into the effects of pair programming and 
analyse some survey data to see how practitioners perceive its potential benefits for project outcomes in terms 
of quality, productivity, stakeholder satisfaction and cost. We conclude that the survey data appears to reinforce 
many of the previous claims made for the benefits of pair programming, but also raises questions that need 
further investigation. 

Keywords 

pair programming, eXtreme Programming, agile methods, survey 

INTRODUCTION 
Perhaps the most controversial practice advocated by some agile methods, in particular eXtreme Programming 
(XP), is pair programming. The primary aim of pair programming is to raise the quality of the software product 
by enabling a process of continuous code inspection (Beck 2005). However it is controversial because it is seen 
by some to have an immediately detrimental effect on programmer productivity. In addition there are human 
factors, such as social dynamics, lack of privacy, lack of ‘quiet thinking time’ and ergonomic issues (Stephens 
and Rosenberg 2003). Like refactoring, which may also appear to have a negative impact on productivity 
(Fowler 1999), pair programming is a practice that requires both faith and investment. 

The intention of this paper is to explore some previous research into the outcomes from pair programming and 
to summarise the various claims made by researchers in this field. We then examine some survey data gathered 
by Ambler (2006) to see what it can tell us about how pair programming is perceived by software development 
practitioners. This paper therefore analyses a subset of the original data that relates specifically to pair 
programming. Using this data it explores some important questions about the extent to which pair programming 
and complementary practices are used in software development and how the impact of this practice is perceived. 

In the next section we look at some previous research into pair programming and identify issues relating to this 
practice. We then introduce the data set that we have used in this study. This is followed by an analysis of the 
data and exposure of our findings and resulting issues. Finally, we provide some conclusions and propose some 
further work. 

PAIR PROGRAMMING 
The basic concept which drives pair programming is that two software developers, where one assumes the role 
of driver and the other of navigator, take part in a joint programming effort at one workstation. This combined 
effort, which requires frequent role changes between the two developers, and changes of pairing, has been 
argued to provide benefits such as improved team discipline, cohesion and morale, better code, a more resilient 
work flow and creation of better solutions. It raises the working knowledge of the entire code base by all the 
developers, and enables mentoring of team members. However, sitting two developers at a single keyboard is 
anathema to some managers, who see this as an instant halving of productivity. In this section we review some 
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of the key literature on the benefits and drawbacks of pair programming to see if there is any consensus on these 
issues. 

What are the benefits of pair programming? 

Early proponents of pair programming suggested that it may be a ‘journey to greatness’ (Williams and Kessler, 
2000,) but such conclusions were based on what was then a limited set of evidence that was to large extent 
anecdotal. Subsequently, however, a great deal of effort has been invested in research into pair programming, 
utilising a range of methodologies including practical experiments in both academic and industrial settings. 
Various authors have suggested that pair programming will lead to an improvement in software quality (DeClue 
2003; Hanks et al. 2004) resulting in end user satisfaction and a good return on investment in IT products. In 
addition, it can also lead to improvement in the satisfaction and morale of software team members (Mendes Al-
Fakhri and Luxton-Reilly 2005), since individuals working in pairs often find it more enjoyable than going solo. 
A study by McDowell et al. (2003) in an academic context suggests that pair programming can be used as a tool 
to bolster the pass rate for programming courses and ensure course completion. According to Canfora et al. 
(2004), working in pairs not only enables individuals to build more knowledge, but also makes that knowledge 
building more stable than when working alone. McDowell et al. (2003) and Layman (2006) reveal that pairing 
with another student to design and code provides the following useful combined experiences; feeling 
accountable for the partner’s achievements, being more organized, having advice and other opinions on 
solutions to difficult technical problems, getting tasks completed in a shorter period of time, avoiding coding 
errors and helping to identify errors in one’s thinking when explaining ideas to the pair programmer. 
Freudenberg et al. (2007) claim that the major contribution of pair programming is in providing a context within 
which the level of talk necessary for collaborative software development can be framed. One of their findings 
was that talk about coding itself was relatively limited and that conversion was at a higher level of abstraction. 
In fact it is a significant finding that the conversation is at the same level of abstraction for both members of the 
pair, an observation also made by Salinger et al. (2008). Lui, Chan and Nosek (2008) seem to reinforce this 
assessment of the level of abstraction that pair programmers work at, with their conclusion that the benefits of 
pairing are seen primarily at the level of design rather than coding. 

If the various claims made for the effects of pair programming are indeed true, then pair programming may lead 
to improvements not only in the quality of the software being implemented but also to the productivity of the 
programmers. However it is difficult to find compulsive evidence about measurable benefits. Experiments by 
Muller (2005), Hulkko and Abrahamsson (2005) and Arisholm et al. (2007) have produced results that are, at 
best, open to interpretation about the potential befits of pair programming in, for example, reducing the overall 
defect rate, or coping with complexity. 

Does pair programming cost more? 

If the benefits of pair programming are debatable, what does research tell us about its drawbacks? Even if pair 
programming can increase quality and satisfaction, some believe that there is a penalty to pay in terms of 
productivity and cost. Research relating to pair programming in an academic context by Williams et al. (2000) 
and Xu and Chen (2005) supports the claim that pairs complete their tasks faster than an individual developer, 
potentially resulting in quicker delivery of the software product. However these increases in overall speed may 
be small and do not take into account the increase in the overall amount of effort expended in total, which may 
range between 43% and 111% (Arisholm et al. 2007). The available research does not give much clarity to that 
debate. Xu and Chen (2005) state that pair programming increases the cost of development, but Williams et al. 
(2000) refute that claim, suggesting that the teamwork aspect mitigates some of the complex and lengthy 
compile and test activities involved in delivering working software, while helping to provide solutions to 
technical problems. Cockburn and Williams (2000) claim that there is only a 15% increase in overall 
development costs, whereas a study involving 15 full-time programmers by Nosek (1998) claimed that the cost 
could increase by about 42%. Another pair programming experiment involving students indicated that the cost 
could go up by 100% (Nawrocki and Wojciechowski 2001). However, Lui and Chan (2003), working with 
professional developers in an experimental context, concluded that this was a worst case scenario rather than the 
norm. 

One aspect of the cost of pair programming is the initial investment required to introduce pair programming into 
a development team that has not previously used the practice. Again, previous research shows mixed results. 
Padburg and Muller (2004), while suggesting that pair programming suits those software development products 
where the product’s time to market is critical, also downplay the potential start-up costs of moving to a pair 
programming approach. Their research indicates that the practice of pair programming is relatively easy to learn 
and use, provided that the individuals are motivated, committed, and believe that it will lead to major economic 
benefits while making the software development practice more comfortable and enjoyable. However, a study 
involving students by Vanhanen and Lassenius (2005) showed that pair programming teams had 29% lower 
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project productivity than teams comprising solo developers due to the time spent learning at the beginning of the 
project. 

Limitations of previous studies 

One aspect of previous studies into pair programming is that many of them have been undertaken in an 
academic context using students as the pair programmers. However, using pair programming with students is 
totally different when compared to using this practice in a real agile software development team, so the 
outcomes (quality, productivity, stakeholder satisfaction) will be different, and cost will be very difficult to 
estimate in a non-commercial context. Commercial agile teams are cohesive groups, where each individual 
member works for the team, and it is team success that counts at the end of the day. Team members know each 
others’ skill sets and are able to pair with anyone else in the team at any time. Some teams swap pairs daily and 
it is the individuals who themselves decide whom they will pair for the day. Agile teams will have members who 
are expected to have excellent technical skills. However, it is their superior inter-personal skills (e.g. 
communication, interaction, ability to listen and digest another person’s view, ability to handle critical remarks 
made by other team members on code and design issues, ability to help others and take up leadership roles) that 
are the main reasons why they are selected to work in an agile team. The hiring process for agile teams often 
involves putting a potential candidate for a day with the team to gauge his/her ability to work in that 
environment. In contrast, academia throws students together using an entirely different set of pairing criteria. 

In an academic context, there are many constraints that will affect the relevance of results from pair 
programming experiments. Students in a class have varying technical and inter-personal skill sets. Who pairs 
with who would be critical for student performance, and who decides on a pair? Will a student want to work 
with a total stranger in their class? Will a team be made up of only two students? If they have problems with 
their tasks are they allowed to seek help from another team? How long it will take for them to bond with one 
another? Will pairs be co-located for the tasks? The student work environment and setup for pair programming 
is totally different from a professional development context. They may only be together for a few weeks, 
whereas with a professional agile team the individuals not only know one another but have worked with other 
team members for number of years. These are just some of the issues that make pair programming so different in 
academia when compared to a professional environment. This is an important consideration when drawing 
conclusions from the literature, due the preponderance of student-based studies on pair programming. For 
example, Dybå et al.’s (2007) analysis of relevant studies included 11 student based experiments out of a total of 
15. Even where professional developers have been used for experiments (e.g. Liu and Chan 2003; Arisholm et 
al. 2007) we have to be aware that the environments in which the experiments took place were dissimilar to their 
normal working environments, where teams have evolved over a long periods of time. Artificially constructing 
teams for the purposes of measuring pair programming is therefore liable to distort the results. One exception to 
these studies is Vanhanen and Lassenius (2007), which reports the perceived effects of pair programming in a 
large scale, industrial software development context. This study reported improvements in quality but at the cost 
of greater overall effort required to implement system features. 

Our investigation into the available literature on pair programming suggests that there appears to be general 
agreement that the main benefits of pair programming are probable (though not universally proven) 
improvements in product quality and an increase in satisfaction for individuals on the software development 
team. However, there is no general agreement about the impact of pair programming on the cost of software 
development to balance the claimed benefits of this practice. Furthermore, one cannot make specific claims 
about how it impacts the productivity of individuals or the satisfaction of stakeholders since the results from 
different studies vary widely. 

THE AGILE ADOPTION SURVEY DATA 
Most published research into pair programming is based on case studies or experiments, but surveys may 
provide us with a further opportunity for triangulation. A number of surveys on agile methods have been 
undertaken, but many of these have been administered by commercial organisations with small sample sizes and 
a limited range of questions, rarely addressing pair programming as a technique. However in this paper, we 
analyse parts of a data set gathered from an online survey with a large sample size that included the adoption of 
individual techniques, including pair programming, in its coverage. In the remainder of this paper, we introduce 
the data, show the results of our analyses and consider how our results relate to previous research findings.  

The data set used in this paper was made available by Ambler (2006) and is based on an on-line survey that had 
4,235 respondents. The respondents were self-selecting from the professional developer community based on 
the mailing lists of Dr. Dobbs Journal and Software Development Magazine. These magazines have readerships 
of 120,000 and 100,000 respectively, but there is a significant overlap between their two mailing lists. This 
readership, and thus the respondents, includes both agile and non-agile practitioners. Perhaps the most important 
aspect of the questionnaire is the four questions relating to the outcomes of software development projects, 
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namely; productivity, system quality, cost and stakeholder satisfaction. It also included questions about the agile 
techniques (including pair programming) that were being adopted, making it possible to see if certain practices 
and contextual factors could be correlated with certain outcomes. Amongst other questions, the survey asked; 
‘How have agile approaches affected your productivity?’, ‘How have agile approaches affected the quality of 
the systems produced?’, ‘How have agile approaches affected the cost of development?’ and ‘How have agile 
approaches affected the satisfaction of your business stakeholders in the work produced?’ Each question was 
answered using a 5 point Likert scale with an additional ‘Don’t know’ option. 

In this paper, to explore the relationship between outcomes and the use of the pair programming technique, we 
focus on the outcomes from IT projects as dependent variables, with use of pair programming as the main 
independent variable, in association with the XP method and the related technique of co-location. 

Of course there is a concern about the reliability of on-line survey data, which has not been controlled. Our 
statistical analyses of its results may be compromised by issues such as random errors, constant errors and the 
acquiescence effect. However we believe that a survey such as the one analysed here, which provides a large 
data set from a professional environment, and which does not confine itself only to the promoters of agile 
methods but to software developers using a range of methods, may nevertheless provide us with some useful 
insights. Another factor that may cause concern is that the survey is measuring perceived, rather then necessarily 
actual, effects on outcomes. However It should be noted that research in the literature that claims to measure 
actual effects has only been attempted in artificial conditions. Empirical work in the field, such as Vanhanen and 
Lassenius (2007), has of necessity measured perceived results since professional developers in their work 
environment cannot provide comparative data. 

Observations from the data 

We made some initial observations from the data related to the practice of pair programming and the contexts in 
which it was being used. Given that the practice of pair programming is most closely associated with the XP 
method in the literature, we were interested to see if this proved to be the case in practice. Table 1 shows the 
reported use of pair programming by respondents in different categories. From these figures it seems clear that a 
significant number of those who are using pair programming are also practicing XP.  

From another perspective, however, the relationship between pair programming and XP appears weaker. Table 2 
shows the numbers of respondents using pair programming, both with the XP method and with other methods, 
agile or not. We can confirm from these figures that pair programming is more popular within the XP method, 
but the figures are however rather low, with less than half of the respondents using XP claiming to use pair 
programming, regardless of whether XP is used in conjunction with other agile methods. 

Table 1: Reported usage of pair programming by respondents 

% using pair programming out of all respondents 13.82% 

% using pair programming out of agile respondents 27.85% 

% using pair programming out of non-agile respondents 3.12% 

% using pair programming who are following XP 70.60% 

Table 2: Reported usage of pair programming in different software development contexts 

Pair Programming Context Number Sample size % of sample 

Using Pair Programming in any method 585 4,234 13.82% 

Using Pair Programming but not within an agile method 75 2,403 3.12% 

Using Pair Programming within one or more agile methods 510 1,831 27.85% 

Using Pair Programming with XP combined with other methods 232 537 43.20% 

Using Pair Programming with XP alone 181 416 43.50% 

Using Pair Programming with other agile methods 97 885 10.96% 

Adoption of pair programming by XP teams 

Whilst there may be many reasons for the relatively low take-up of pair programming within XP and other agile 
methods, one possibility that could be considered is that the controversial nature of the technique has dissuaded 
developers from adopting this practice. However, if we look at the data further we can see that the take up of all 
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individual XP practices within the method is remarkably low. Not all of the XP techniques specified by Beck 
(2005) were included in the original survey. However it did include seven techniques that map closely to core 
practices of the XP method. These were; active stakeholder participation, code refactoring, code regression 
testing, co-location, continuous integration, pair programming and test driven design. Table 3 shows the number 
and percentage of respondents using each of these practices. The sample size for this table was 420, which was 
the number of respondents who claimed to be using XP and no other method. We excluded common coding 
guidelines from this table, even though it is an XP technique, because it is a highly generic technique that is 
applied across many development approaches, both agile and non-agile. 

This data suggests that pair programming is not particularly out of line with several other XP techniques in 
terms of take-up. It is notable that code refactoring, which as we have indicated might also be regarded as one of 
XP’s more controversial practices, has the highest adoption rate of these techniques. Equally important, the 
technique with the lowest take up was co-location, which is a fundamental support practice for pair 
programming, though it is possible that some pair programmers may be using tool support for distributed pair 
programming (Hanks 2004; Stotts et al. 2004). 

Table 3: Actual use of seven core XP techniques among the sample who claimed to be following XP 

THE PERCEIVED IMPACT OF PAIR PROGRAMMING  
From our review of the literature on pair programming, the data set provided by the Ambler survey, and some of 
our initial observations, we chose to address the following questions: 

What is the perceived impact of pair programming practice on the four outcomes of quality, productivity, cost 
and satisfaction, in comparison with those who do not use this practice, across all development methods? 

Given that pair programming is a core technique in eXtreme Programming, what is the perceived impact of pair 
programming practice on the four outcomes of quality, productivity, cost and satisfaction, in comparison with 
those who do not use this practice, amongst XP practitioners? 

Given that many agile techniques are seen as synergistic when used in combination, are the perceived outcomes 
from using pair programming in XP affected by using it in conjunction with the closely related technique of co-
location? 

The Impact of Pair Programming on Project Outcomes 

For our first analysis, we looked at the impact of the practice of pair programming on project outcomes across 
all software development methods, including those that did not use any agile methods. For each of the four 
outcomes, quality, productivity, cost and satisfaction, respondents who gave a ‘don’t know’ response were 
excluded from the analyses below, so the sample size varies slightly for each outcome (i.e., 2,709 for 
productivity, 2,676 for quality, 2,593 for satisfaction, and 2,505 for cost.) For all of the data used in these 
analyses, respondents were asked to indicate their responses using a Likert scale from 1-5. 

Agile Technique used with XP Number Percentage of Sample 

Active stakeholder participation 114 27.14% 

Code refactoring 269 64.05% 

Code regression testing 210 50.00% 

Co-location 66 15.71% 

Continuous integration 176 41.90% 

Pair programming 183 43.57% 

Test Driven Design (TDD) 180 42.86% 
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Figure 1. The impact of pair programming on the outcomes from software development projects 

Figure 1 shows the comparison between reported outcomes for those respondents who used pair programming 
and those who did not. Relevant ANOVA (ANalysis Of VAriance) analyses revealed that the respondents 
claimed pair programming provided significantly better outcomes in terms of productivity (F1,2708 = 104.24, 
p<.01), quality (F1,2675 = 133.06, p<.01) and satisfaction (F1,2592 = 87.77, p<.01), without a significant influence 
on cost (F1,2504 = 1.26, n.s.) 

Pair Programming in XP 

For our next analysis we used data only from those respondents who claimed to be using XP as their only 
software development method. This might give us some indication if pair programming works better in a 
method that advocates its use as part of a set of techniques, or whether the perceived benefits we have reported 
across all methods are similarly reflected within an XP environment. 

Our results are reported in Figure 2. In fact it appears that the reported benefits of using pair programming, 
though significant for both productivity and quality, are actually less within the practice of XP than when 
reported in use across all methods. It should be noted when analysing these results that it was not possible to 
perform ANOVA of the productivity data set (i.e., Levene’s test for heterogeneity of variance was found to be 
significant, F1,374 = 9.08, p<.01), so non-parametric analyses (Mann-Whitney U tests) were consistently used 
instead for the complete data set in this example. They partially confirmed our previous interpretations, in that 
both productivity and quality were perceived as being improved, with no significant increase in cost. However 
there was no significant difference for satisfaction in this case. Because this analysis focused only on those 
respondents who claimed to be following only the XP method (and no other), the sample sizes, after removal of 
the ‘don’t know’ responses, were much smaller than for the first analysis (376 for productivity, 372 for quality, 
349 for cost and 361 for satisfaction). 



19th Australasian Conference on Information Systems The Perceived Effects of Pair Programming 
3-5 Dec 2008, Christchurch  Parsons, et al. 

 716

0

1

2

3

4

5

Pair Programming 3.94 4.16 3.92 3.06

No Pair Programming 3.73 3.93 3.79 3.05

Productivity Quality Satisfaction Cost

 
Figure 2. The impact of pair programming on the outcomes from eXtreme Programming  projects  

Pair programming in XP and the effects of co-location 

For our final analysis, we looked at whether practitioners felt that the practice of pair programming had better 
results when used with the closely related practice of co-location. Since the number of pair programming 
practitioners in XP was significantly larger than the numbers using co-location, it would be useful to know if the 
discrepancy is likely to have impact on outcomes. In this analysis, we only considered those practitioners who 
were using pair programming; however, as mentioned above, relevant statistical analyses were only applied for 
the meaningful responses (i.e., the ‘don’t know’ responses were excluded from the analyses). Consequently, the 
sample size was again different for each outcome.  
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Figure 3. The impact of supporting pair programming with co-location on the outcomes from XP projects 

Our results are shown in Figure 3. In this analysis, reported productivity was shown to be significantly increased 
(F1,172 = 7.83, p<.01) when pair programming in the context of XP was used along with co-location. However, 
the other three outcomes (i.e., quality, satisfaction, and cost) did not seem to see significant effects from the 
closely related practice of co-location (F1,168 = 0.79, n.s.; F1,166 = 1.17, n.s.; F1,155 =0.01, n.s; respectively). 

DISCUSSION OF RESULTS 
Our analysis of the perceived effects of pair programming on the four outcomes of productivity, quality, 
satisfaction and cost provided us with some interesting results. It appears that pair programming may be 
perceived to have a significantly beneficial effect on productivity, quality and satisfaction when measured as a 
technique across a range of different software development methods. However, when it is analysed within the 
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context of XP and again in conjunction with a very closely related practice (co-location) we find that the 
perceived benefits appear to be reduced. We may perhaps speculate that whilst pair programming can be a 
beneficial practice, the extent of its influence depends on the relative effects of other practices. XP for example 
is the most technique driven of the agile methods, and includes a number of different engineering practices. 
Many of these practices appear to synergise with each other so that we may reach a critical mass of techniques 
(Parsons et al. 2006). In this context, the relative impact of using a specific technique such as pair programming 
may be reduced, as other techniques may also be contributing to the overall perceived benefits. We can see from 
our analyses that the floor values for each set of results are increased in the three analyses (Table 4). This may 
contribute to a ceiling effect that sees a reduction of the significance of the effects of pair programming in each 
analysis. 

Table 4: Increasing floor values for each of the three analyses 

CONCLUSION 
In this paper we have reviewed some of the literature that relates to the debate about the benefits and potential 
drawbacks of the practice of pair programming. We have applied some statistical analyses to survey data that 
reports on project outcomes in terms of productivity, quality, cost and satisfaction, using pair programming as 
the main unit of analysis. Our results indicate that pair programming as a software development practice is 
perceived by practitioners as having significant benefits, without a significant increase in cost. This result 
appears to reinforce the more positive outcomes identified from previous research, but does not support the 
hypothesis that pair programming increases costs significantly. In the context of XP, it also appears that pair 
programming is perceived to make a significant contribution to project outcomes, but only in terms of 
productivity and quality. Further, respondents reported that using pair programming along with the closely 
associated practice of co-location appeared to lead to a significant increase only in productivity. We have 
proposed that this may be an effect of relativity, as a consequence of adopting multiple synergistic techniques, 
thus reducing the perceived impact of a single technique.  

Of course this survey data can only be said to reflect the perceptions of a self selecting group of practitioners. 
However the results gleaned from our analysis may provide some insights into aspects of pair programming that 
are worth further investigation. For example, how much of the perceived benefits of pair programming are based 
on a self fulfilling prophecy affect rather than an objective measure of improvement in quality and better 
management of complexity? One survey cannot answer these questions, but nevertheless it raises some 
interesting issues that are worthy of further investigation, in particular the suggestion that perhaps it is 
productivity that can benefit most from the technique of pair programming, a somewhat counter intuitive result. 
However, even if we debate the validity of the apparent quantitative benefits described in this paper, we perhaps 
need to look more closely at the qualitative benefits that may accrue, over longer periods of time and at higher 
levels of system complexity. 
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