
A volume in the Advances in Computer 
and Electrical Engineering (ACEE) Book 
Series 

Xiaofeng Wang
Free University of Bozen/Bolzano, Italy

Nour Ali
Lero- The Irish Software Engineering Research Centre, University of
	 Limerick, Ireland

Isidro Ramos
Valencia University of Technology

Richard Vidgen
Hull University Business School, UK

Agile and Lean Service-
Oriented Development:
Foundations, Theory, and 
Practice



Lindsay Johnston 
Joel Gamon 
Jennifer Romanchak 
Adrienne Freeland 
Hannah Abelbeck 
Kayla Wolfe 
Nicole Sparano 
Nick Newcomer 

Agile and lean service-oriented development: foundations, theory, and practice / Xiaofeng Wang ... [et al.], editors.
       p. cm. 
  Includes bibliographical references and index. 
  Summary: “This book explores the groundwork of service-oriented and agile and lean development and the conceptual 
basis and experimental evidences for the combination of the two approaches”-- Provided by publisher. 
  ISBN 978-1-4666-2503-7 (hardcover) -- ISBN 978-1-4666-2504-4 (ebook) -- ISBN 978-1-4666-2505-1 (print & perpetual 
access)  1.  Computer software--Development. 2.  Agile software development. 3.  Lean manufacturing.  I. Wang, Xiaofeng, 
1971- 
  QA76.76.D47A379824 2013 
  005.1--dc23 
                                                            2012023354
 
This book is published in the IGI Global book series Advances in Computer and Electrical Engineering (ACEE) Book Series 
(ISSN: 2327-039X; eISSN: 2327-0403)

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the 
authors, but not necessarily of the publisher.

Managing Director: 
Editorial Director: 
Book Production Manager: 
Publishing Systems Analyst: 
Development Editor: 
Assistant Acquisitions Editor: 
Typesetter: 
Cover Design: 

Published in the United States of America by 
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax:  717-533-8661 
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2013 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in 
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or 
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

			   Library of Congress Cataloging-in-Publication Data



269

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  14

DOI: 10.4018/978-1-4666-2503-7.ch014

INTRODUCTION

A service oriented architecture (SOA) is a collec-
tion of self-contained services that communicate 
with each other, passing data or coordinating some 
activity. Each service has a provider and one or 
more consumers. The primary aim of a service 
is to support business processes; implementing 
services is not an end in itself, but rather a means 

to deliver agile systems to support a business 
(Wilkes & Veryard, 2004). Nevertheless beyond 
this core requirement there are a number of general 
principles that can be applied to service oriented 
architectures. These principles include that a ser-
vice should have explicit boundaries, be based on 
schemas and wire formats, not classes and APIs, 
and be policy-driven, autonomous, document-
oriented, loosely coupled, standards-compliant, 

David Parsons
Massey University, New Zealand

Manfred Lange
EFI, New Zealand

Test Driven Decomposition of 
Legacy Systems into Services

ABSTRACT

A number of questions have been raised by both practitioners and researchers regarding the compat-
ibility of service oriented architectures and agile methods. These are compounded when both approaches 
are combined to maintain and migrate legacy systems. In particular, where test driven development 
is practiced as a core component of an agile development process, both legacy systems and service 
oriented architectures can present an incongruous set of development challenges. In this chapter, the 
authors provide experience reports on how legacy systems have been adapted to an agile, test driven 
development context by a process of decomposition into testable services. They describe two domains 
and technology contexts where automated agile testing at multiple interface layers has improved both 
quality of service and functionality.



270

Test Driven Decomposition of Legacy Systems into Services

vendor independent and metadata-driven (Tilkov, 
2007). Unfortunately few of these criteria can eas-
ily be applied to the interface of a legacy system. 
In particular, the boundaries and coupling of a 
legacy system may be problematic. However 
the value of services in the context of legacy 
systems is that services do not have to be brand 
new. They can be fragments of old applications 
that were adapted and wrapped, or combinations 
of new and legacy code (Papazoglou & van den 
Heuvel, 2007).

Though we can perhaps bridge legacy systems 
and service oriented architectures, there are other 
questions raised about how effectively an agile 
software development approach can be applied 
when working with these systems. Service oriented 
and agile approaches may conflict in areas such as 
architecture, team organisation and feedback (Els-
samadisy, 2007). It has also been suggested that 
service orientation encourages upfront architecture 
while agile does not, though service oriented ar-
chitectures can be incrementally introduced into 
an existing system. On the other hand it does pay 
to understand the strategic direction in advance, 
including layers and main system components 
such as infrastructure services. There are also 
potential conflicts in terms of organizing teams, 
where a service oriented approach encourages 
teams to split along functional lines while agile 
approaches encourage cross-functional teams. 
This can be a challenge in maintaining perspec-
tives, for example ensuring that business logic is 
not added to the codified structure of a schema or 
document. In terms of feedback, a service oriented 
approach does not have the same focus on frequent 
feedback at both a technical and personal level. 
There may also be tensions in terms of the level of 
ceremony required for different types of software 
development. Chung et al. (2008) suggest that 
the mainstream agile methods focus on forward 
engineering new systems, and claim that a more 
formal approach related to the Unified Process is 
required to integrate legacy systems and services. 
Agile assumptions about delivering potentially 

shippable code at the end of every iteration are 
also challenged when dealing with live external 
services that may require extensive performance 
and stress testing (Puleio, 2006).

Despite these reservations, the experience 
reports in this chapter offer a different perspec-
tive to some degree. Perhaps the key aspect of 
the agile approach is flexibility or adaptability, so 
it is the flexibility aspect of services that assists 
agile transformation (Sucharov, 2007). Flexibil-
ity is required in order to address ever-changing 
market and customer expectations, and the move 
to an agile service oriented approach provides 
the capability to adapt to these ever-changing 
expectations.

In addressing both the mapping between legacy 
systems and service oriented architecture, and the 
relationship between both of these and agile meth-
ods, it is testing that can provide the overall glue to 
the process, providing that a test driven approach 
is taken. Test driven development drives design, as 
well as providing unit tests, and therefore enables 
us to define the interfaces between services and 
legacy systems. Sharing tests between client and 
service developers enables the two layers to be 
developed and maintained effectively. The internal 
design of services can also be performed in an agile 
way, once the outer interface to the service has 
been defined. In particular the interface concept 
already goes a long way towards making a legacy 
system more agile, for example by being able to 
componentize functionality into services, making 
testing easier or enabling it in the first place, or 
by plugging in different flavours of infrastructure 
services (security, transactions, logging, etc.) 
Tests provide a way of specifying the boundaries 
of vertical slices of functionality that might be 
decomposed into services. They also provide a 
way of defining the service’s external contracts 
prior to those contracts being implemented. A 
unit testing philosophy also emphasizes testing 
services in isolation. The service under test can 
be provided with meaningful mocks for other 
services that it may depend on.



271

Test Driven Decomposition of Legacy Systems into Services

In the organisations used as the basis for this 
experience report, the generic approach taken 
was to gradually identify legacy features that 
could be specified by a set of interface tests, 
and then extract these into independent services. 
Though not initially test driven, since the module 
functionality was already in place, the extracted 
services could then be developed in a test driven 
manner as they were subsequently refactored. 
Feature identification was driven both by the 
requirements of other product components and 
services and customers who wanted to integrate 
with in-house or 3rd party systems. Therefore it 
was driven by external requirements, rather than 
trying to identify features in isolation. In addition, 
the development teams also used a service oriented 
approach for all new functionality, thus creating 
a hybrid architecture between a 2-tier legacy 
and a 3-tier service oriented architecture. From 
another perspective, testability was enhanced by 
an architecture that allowed interoperability with 
plugins for integrating external services. Again, 
plugins could be individually tested. This chapter 
provides a number of practical experiences and 
lessons learned in using tests to drive the wrapping 
of legacy systems into discrete, testable services.

WORKING WITH LEGACY CODE

Legacy systems are commonplace in software 
supported industries, and these systems can take 
many forms. They may be acceptable to their 
regular users even when they have significant 
bugs, as users become familiar with the required 
workarounds, and are aware of current ‘charac-
teristics’ of the system. Sometimes customers 
do not characterise issues as bugs, but rather are 
aware of what they regard as usability problems. 
On the other hand the cost of customer-impacting 
errors on systems that are already deployed is 
high (Feathers, 2002). Given that legacy systems 
are typically the result of significant investment, 
and probably in live use, development teams 

considering tacking underlying issues such as 
large, complex and flawed legacy systems need 
to balance a number of trade-offs.

Thomas (2006) describes the problem of large 
systems with defective but poorly understood 
modules, making developers approach each fix 
or feature with great trepidation. As he indicates, 
the general solution to this kind of problem is to 
incrementally replace the faulty components, one 
component at a time. There are, however a number 
of problems with this approach. Legacy systems 
sometimes include legacy testing frameworks that 
may themselves need to be refactored or replaced 
before progress can be made (Puleio, 2006). It 
can also be difficult to find any inflection points 
where parts of the legacy system can be broken 
apart. Feathers (2002) refers to techniques such 
as dependency inversion to create such inflection 
points, but this is only possible if the legacy system 
is written in a language that makes such interven-
tions feasible. Sometimes the only inflection point 
that you can find is the system boundary which can 
encompass the GUI, calls to other external libraries 
and the database (Feathers, 2002). However simply 
adding a large wrapper around monolithic legacy 
systems does not help address possible underlying 
issues of on-going maintenance costs and lack of 
flexibility (Sucharov, 2007). Furthermore having 
large monolithic blocks of code with many service 
interfaces interacting with them will not yield the 
full benefits of a service oriented architecture, 
where conceptually each single service can be 
replaced with a different implementation without 
the need to change any other part of the system.

Given the problems of trying to tackle mono-
lithic systems, and the likelihood that adding a 
service wrapper alone does not address under-
lying problems, there needs to be a systematic 
approach to converting legacy systems to ro-
bust, maintainable and modular service oriented 
systems. This requires techniques of discovery 
and transformation rather than classical design 
and development. The first step in the process 
is to bring test coverage and code modularity to 



272

Test Driven Decomposition of Legacy Systems into Services

the point where transformations can be applied 
frequently and with confidence (Thomas, 2006).

Visaggio (2001) asserts that when a legacy 
system has poor quality it is said to be old or aged. 
This perspective emphasises the quality issues 
in legacy systems. Feathers’ (2002) definition 
of legacy code also relates to quality, but from a 
different perspective, that it is code without tests. 
The fundamental assumption, therefore, is that to 
bring legacy code into line with current develop-
ment we must start with a complete test suite, 
which will both externalise the current quality of 
the system and provide a lever for improving it. 
Feathers also lays out a general strategy for the 
management of legacy code for which tests are 
essential, namely:

1. 	 Identify Change Points: Decide where 
the changes should be made. Ideally the 
approach chosen should be the one that 
requires the fewest changes.

2. 	 Find an Inflection Point: Identify a nar-
row interface to a set of classes where any 
changes to those classes can be detected; 
like a façade to part of the system.

3. 	 Add a Test Covering to the Inflection 
Point: This means writing a set of tests for 
the interface identified above. Of course this 
cannot be test driven since the unit under test 
already exists. The tests for the inflection 
point should be unit tests, not integration 
tests, so both external and internal depen-
dencies may have to be broken. This phase 
consists of the following steps:
a. 	 Break External Dependencies: It may 

be necessary to break dependencies on 
other components. Feathers suggests 
using dependency inversion, where the 
language of the legacy system allows 
this. Otherwise some kind of mocking 
layer would have to be used.

b. 	 Break Internal Dependencies: Some 
code under test may create concrete 
components that are outside the scope 

of the units under test. Feathers sug-
gests a combination of subclasses and 
null classes to avoid these orthogonal 
components being created.

c. 	 Write Tests: The tests need to cover 
the inflection point as comprehensively 
as possible. Starting with boundary 
values is appropriate.

4. 	 Make Changes: After an initial test cover-
ing is in place, further tests should become 
evident as changes are made to the legacy 
system. This takes the process into a more 
test driven mode as each change can be 
preceded by writing the test for the change.

5. 	 Refactor the Covered Code: As is normal 
practice in test driven development, each 
change to the code must first pass the test, 
and then be refactored to improve its design, 
while still passing the test.

While this strategy provides a general guideline 
for the steps of a test driven process for work-
ing with legacy code, we need to also take into 
consideration a number of contextual issues such 
as commercial aspects. Perhaps the most signifi-
cant of these is the extent to which this is seen 
as a process that aims to eventually replace the 
legacy codebase, or whether it becomes more of a 
mechanism to better control and leverage legacy 
systems. The extent to which the legacy system 
is changed and refactored depends on issues such 
as the current reliability and maintainability of the 
legacy system, the extent of new requirements, and 
the potential costs versus the payback of replacing 
legacy components.

EXPERIENCE REPORTS: 
FROM LEGACY SYSTEMS 
TO AGILE SERVICES

This article reflects on some real world experi-
ences of a number of the issues introduced thus 
far, in the context of two different types of legacy 



273

Test Driven Decomposition of Legacy Systems into Services

systems, written in different languages in differ-
ent domains. In both cases the lessons learned 
are similar. However experience has shown the 
limitations of over-simplistic models of the use of 
services as a half-way house to refactoring under-
lying systems. Such models advocate the use of 
a service wrapper to encapsulate a legacy system 
as the first step to re-engineering or replacing that 
system. In many cases, however, for practical, 
financial and pragmatic reasons, it is enough to 
build a testable service wrapper around a legacy 
system without extensive rewriting or refactoring. 
Thus we should not approach the wrapping of 
legacy systems with an assumption that the system 
itself will be extensively modified. Rather, the 
service wrapper enables the system to be safely 
refactored in cases where business requirements 
for such changes are identified.

The first experience report, which is relatively 
brief, may be regarded as setting the scene for the 
second, in that it provided the context for a service 
oriented approach that began by making conven-
tional assumptions about the gradual replacement 
of a legacy system by means of inflection points 
and testable wrappers, as described by Feathers 
(2002). The second report, which is somewhat 
more detailed and elaborated, may be regarded 
as putting into practice some of the learning that 
took place in the context of the first report. It 
certainly takes a more circumspect view of the 
process within which legacy code may be changed 
and refactored, driven by pragmatic requirements 
and considerations.

Experience Report 1: The Green 
Pen and the Blue Code

The first system described here was in the context 
of a customer relationship management system for 
the utility industry. In this case the legacy system 
had a billing engine written in a 4GL as its core 
component, with some Java connectors for inte-
gration with other functionality implemented in 
Java. In order to render this system more easily 

interoperable with client facing systems, it was 
originally intended to replace this system with a 
full Java implementation. However this task was 
made more complicated because the legacy system 
was still under maintenance, so was a moving 
target in terms of attempting to replace it with a 
new system. Therefore, despite an original intent 
to replace the old system, this was adapted over 
time into a more pragmatic approach. To provide 
the development team with a strategic direction, 
the vision of a target system design was created. 
This was referred to as the ‘green’ system design, 
while the legacy system was coded ‘blue’. The 
team adopted the metaphor of the ‘green pen’ 
based on this; Everyone gets a green pen. Colour 
in as much as you can, but no more than makes 
business sense. Practically, it meant that when 
the ‘green’ pen was used the resulting design and 
implementation was expected to be in line with 
the target design. The colour coded approach also 
recognised some of the more valued features of the 
‘blue’ legacy system, including its transactional 
support, which was exposed via Java connectors 
to enable the integration of transactions across 
the blue and green components. This aspect of the 
system enabled a transaction started in the client 
facing layer to propagate into the billing engine. 
This represented a business critical feature of the 
legacy system that also assisted the service orien-
tation of that feature via its external connectors. 
In terms of the metaphor the introduction of this 
cross-cutting transaction mechanism itself was an 
example of using the ‘green’ pen as it was designed 
and implemented in line with the target system 
design, but provided a service view of the ‘blue’ 
functionality in the legacy system.

Despite the limitations of working with a live 
legacy system under maintenance, and the im-
practicality of replacing this system, the overall 
approach of developing a service oriented wrap-
per enabled the green and the blue code to work 
effectively together within an agile development 
approach. In time, with the green pen colouring 
in all the external interfaces, the whole system 



274

Test Driven Decomposition of Legacy Systems into Services

looked service oriented, regardless of the legacy 
components behind the service layer. All the blue 
code eventually had a green interface. In addition, 
new features were developed completely using the 
green pen. The result was a hybrid system design 
proving that a legacy system (the ‘blue’ parts) and 
a service oriented architecture (as in the ‘green’ 
design) can co-exist.

The main driver for compromise in the extent 
of replacing legacy systems turns out to be a 
combination of marketing and risk, so in the end 
it comes down to commercial considerations. 
What sells is what can be well presented to deci-
sion makers, which is not necessarily the same 
as daily functionality for users. Sometimes a 
new wrapping (e.g. updated user interface) is all 
that is required to present a product or a feature 
as ‘new’ to the market. Quality of itself is not 
the key selling point. Given that quality is not 
an absolute, only when software failures affect a 
customer’s bottom line does quality become the 
most important issue. However the risk to quality 
of rewriting the entire billing engine was also a 
significant consideration.

Experience in the first context revealed that the 
most important factor in any approach to moving 
a project forward from a legacy past is to choose 
the overall direction. The original intent to replace 
the legacy system turned out, for various reasons, 
not to be economically practical, nor indeed par-
ticularly valuable. An embodiment, perhaps, of 
the agile phrase ‘YAGNI’ (‘you ain’t gonna need 
it’). This experience underlined the concept that a 
simple replacement of a legacy system with new 
code is often not the most realistic or economical 
approach. Therefore a disciplined way of bring-
ing legacy systems into more managed, service 
oriented architectures is important, along with an 
agile mindset that promotes ‘the simplest thing 
that could possibly work’ as the default technical 
architecture, maintained and refactored as needed. 
This was the approach that was brought forward 
into the second experience report.

Experience Report 2: The Big Picture 
– Interfaces over Business Logic

The second domain described in this article is 
production management for the printing industry. 
In this case, the legacy system was written in 
C++ with some portions written in C#. It lacked 
a sufficiently clear strategic design, with code 
written from disparate perspectives. There were 
also known problems with the existing codebase, 
with customers experiencing problems that could 
be serious enough to affect their productivity. 
However, despite these issues, given the experi-
ence at the previous organisation, replacing the 
entire existing legacy system was not considered 
an option. Instead, the first priority was to regain 
control over the system by introducing adequate 
test coverage so that a solid foundation could be 
created for future development.

The system had been developed over a long 
period of time by many people, so although there 
were islands of consistency in the way the code 
was written, there were also many inconsistencies, 
including different approaches to C++ metadata, 
and seven different ways of any two product 
components talking to each other (database, files, 
COM etc.) The most challenging feature was the 
management of database schema upgrades which 
were part of the native client, thus occasionally 
causing avoidable issues in live deployments. 
As a first step to taking the system into a service 
oriented architecture, the Web UI was moved 
from a 2-tier to a 3-tier architecture, at the same 
time introducing an application server as a new 
product component. Upgrade code for the database 
was moved to the application server installer to 
solve the brittle update problem, replacing it with 
a solid and reliable mechanism.

Over time, the legacy system has been en-
capsulated behind a series of service wrappers, 
each one with comprehensive test suites. Legacy 
unmanaged C++ has become managed, with new 
code in C#, but all residual unmanaged code behind 



275

Test Driven Decomposition of Legacy Systems into Services

managed wrappers. For the native client, a hybrid 
approach was established to allow features using 
services to co-exist with features using a 2-tier 
approach, i.e. talking directly to the database.

Although there was no overall requirement to 
re-engineer the entire legacy system, there were 
business drivers that triggered steps 6 and 7 in 
Feather’s strategy for legacy code; to fix and refac-
tor. The time when this most urgently had to be 
done was when the code had failed, particularly if 
a customer suffered a major software issue. When 
this happened with unmanaged legacy code, a 
testable wrapper was added to enable the code 
to be fixed and refactored. As a result of having 
these testable wrappers around the legacy code, 
the number of these reactive emergency fixes 
having to be done inside legacy code dropped 
to practically zero. In the longer term process of 
tackling less critical legacy issues, there are on-
going quality improvements of 10%-20% a year 
in reported errors. In that less urgent context, tests 
are added to the test suite as needed. Whilst new 
code is continuously refactored, legacy code is 
not refactored as a matter of course, but only for 
major issues or where it is ‘obvious’. Some of 
the more obvious refactorings that have proved 
worthwhile have been related to the inconsisten-
cies of past coding practices. The large product 
codebase has 70 projects, and 5,000 files, with a 
build that used to take an hour. There were many 
reasons for this, including empty files left in the 
system and the same code appearing in binaries 
more than once. Visaggio (2001) defines ‘use-
less components’ as those that provide worthless 
output, but it is also the case that a legacy system 
may contain useless components that do nothing 
at all, and these should certainly be refactored out 
of a system. A related feature of a legacy system 
may be useless duplication. One of the important 
pieces of test code added to the system does not 
test functionality but consistency. It tests all the 
source header files to check that the first line is the 
‘#pragma once’ pre-processor directive that causes 
the current source file to be included only once 

in a single compilation. Other tests were added 
that eliminate risks from non-code related items 
such as preventing the introduction of business 
logic to the service interfaces (service contracts, 
data contracts, etc.).

Other important refactorings relating to header 
files included using the correct syntax for includ-
ing library headers versus programmer defined 
headers to optimise the search path and removing 
multiple includes. As a result of refactoring the 
system’s naming and header conventions, the 
build time has now been reduced from over 1.5 
hours to 25 minutes (of which about 5 minutes are 
running the suite of developer tests), with further 
improvements restricted by the linker being single 
threaded rather than by the compilation stage. This, 
however, is still not seen as a final destination. 
Further improvements will be applied in the future.

Figure 1 provides an architectural view of the 
use of testable service wrappers around legacy 
code, and the various communication and test-
ing inflection points in this particular experience 
context. Windows Communication Foundation 
(WCF) is used to expose services behind URLs, 
giving a range of communications options to 
services. The communications protocol can be 
configured without changing the server or the 
client. The most efficient protocol can therefore 
be chosen both for testing and deployment. Tests 
can even bypass the WCF proxy/stub code where 
appropriate to speed up testing. Each service can 
be tested in isolation. The legacy system features 
are encapsulated in services that expose interfaces, 
give additional testability and overall system con-
sistency. From the service consumer perspective, 
it makes no difference if the underlying code is 
new or legacy. There is the capacity to replace 
legacy code with new code if required without 
affecting the client interface. Figure 1 shows that 
there are a series of test inflection points; the na-
tive client (which still has some legacy features 
to be refactored out, such as direct database con-
nections), the Web UI, the service interface and 
the services themselves. This enables tests to be 



276

Test Driven Decomposition of Legacy Systems into Services

written in TestComplete or White for the native 
UI, Selenium for the Web UI, direct developer 
tests on the various APIs and service endpoints, 
and Fitnesse acceptance tests for business pro-
cesses using the service interfaces. The loosely 
coupled service oriented architecture also enables 
integration with non-Microsoft systems, and with 
the standard Job Definition Format (JDF) and 
Job Messaging Format (JMF) used within the 
printing industry.

COMMERCIAL AND OTHER 
BENEFITS

While it is important to give sufficient weight to 
the technical perspective on transforming legacy 
systems into services through test driven devel-
opment, the key drivers behind the approaches 

described in this chapter are commercial aspects. 
With the approach now taken it is possible to drive 
the system in any direction that may be required 
by the market and/or customers. Integration 
with partner products, support of mobile clients, 
plugging-in customer-specific functionality, and 
other outcomes of this architecture are the means 
to help the company and the product to address 
new markets.

The benefits of service oriented architectures 
also include scalability. The product in the second 
experience report started with a target of 5 to 25 
users many years ago. With the new approach it 
scales to hundreds or thousands of users. Again, 
this creates additional commercial options.

The 2-tier approach also had a security chal-
lenge as a web application, which is typically 
deployed in a demilitarized zone (DMZ), needs 
direct visibility to the database server. With the 

Figure 1. Service oriented architecture, inflection points, and tests



277

Test Driven Decomposition of Legacy Systems into Services

new design in place for the web user interface, 
the product has eliminated this requirement thus 
resulting in strengthened security in live deploy-
ments.

By standardizing on service oriented integra-
tion the system becomes more consistent and easier 
to maintain. Code and design that does not conform 
to the coding and design conventions is easier 
to spot and eliminate, further enhancing quality.

Finally by using an agile approach, in particular 
through the support of automated tests and builds, 
the service oriented architecture can be rolled out 
incrementally, focusing first on the most important 
areas of the product. This maximizes customer 
satisfaction and has a positive impact on the bot-
tom line of the company.

FUTURE WORK

Going forward, areas for further exploration 
include further decoupling using services. For 
example certain infrastructure elements such as 
security, transactions, logging, monitoring, etc. 
could be provided using a combination of services, 
aspect oriented programming (AOP) and a depen-
dency injection framework. With this in place a 
test-driven approach towards implementing these 
cross cutting concerns is expected to become even 
easier. Applied to legacy systems it could mean 
that code that is related to these infrastructure ele-
ments can be removed to separate these concerns 
from the business functionality.

RELATED WORK

Legacy systems provide a number of challenges to 
enterprises. They may be poor quality, monolithic 
and difficult to update and reuse. Approaches to 
the refactoring of legacy systems stress the impor-
tance of testing, though the types of testing rec-
ommended may vary. Feathers (2002) addresses 
common issues of working with legacy code, 

including the agile approach of test driven devel-
opment, but a number of the specific strategies he 
suggests are only appropriate to legacy systems 
coded in object oriented languages. In contrast, 
renewing more traditionally coded systems may 
need to rely more on acceptance testing. Visag-
gio (2001) outlines three tasks in the process of 
legacy systems renewal, covering both reverse 
engineering and restoration; automatic processes 
performed by tools, reading code and documenta-
tion, and interviewing the users, maintainers or 
managers of the system. The key goal is to isolate 
stable information (embodied in some consistent 
entity) and unstable information (implicitly held 
by people), and then to transform the unstable 
information into stable information. One important 
feature of this is the role of acceptance testing in 
rendering the unstable, stable. Service oriented 
architectures have also been analysed in the con-
text of legacy systems by a number of authors, 
including Heckel et al (2008) who also stress the 
importance of automation on some reengineering 
processes, extracting layered service oriented 
architectures from monolithic legacy systems. 
The theme of reengineering a legacy system into 
a 3 layer architecture is also highlighted by the 
SOSR approach (Chung et al., 2008)

Table 1. The relationship between traditional 
software maintenance and agile development 
(from Thomas, 2006) 

Traditional Software 
Maintenance

Agile Development

Understanding the essence of 
the system

Metaphor and Stories

Customer defect and feature 
requests

Customer and Stories

Test suites Test first, Unit test, Accep-
tance test

Regression testing Continuous integration and 
test

Fixes and “Dot” Release Small Increments

Change Management Scrum, Planning Game, 
Stand Up



278

Test Driven Decomposition of Legacy Systems into Services

In terms of agile, we see two areas where 
agile methods relate to the various aspects of 
legacy systems of service oriented architecture. 
First, we see agile techniques such as test driven 
development and refactoring being applied to 
legacy systems renewal. Second, we see the role 
of services in supporting more organisational 
agility. As Papazoglou & van den Heuvel (2007) 
indicate, an agile approach is needed to support 
the rapid construction and assembly of business 
services into larger architectures. Thomas (2006) 
also notes that many agile practices actually map 
well to more traditional aspects of the maintenance 
of legacy systems, such as regression testing and 
change management (Table 1).

SUMMARY AND CONCLUSION

In this experience report we have reported on two 
different contexts in which legacy systems have 
been integrated into service oriented architectures 
using an agile test driven approach. Despite the 
two contexts being in very different domains 
using very different technologies, in both cases 
the wrapping of legacy systems with test driven 
wrappers not only exposed the legacy systems 
as more flexible and interoperable services, but 
also enabled them to be substantially improved 
and refactored.

Being an experience report this chapter is not 
intended to present new approaches to test driven 
decomposition of legacy systems into services. It 
does, however, provide an opportunity to reflect 
on how the work of others has been applied to this 
particular context. It also gives an opportunity to 
consider how an individual enterprise might adopt 
and adapt a particular approach to the renewal 
of legacy systems via an agile service oriented 
architecture taking into account factors such 
as the nature of the original legacy system, the 
quality of that system and the market forces that 

may or may not require complete refactoring of 
such systems once they have been encapsulated 
as services. The concept of automation, as out-
lined by Visaggio (2001) and Heckel et al (2008), 
and going beyond simply wrapping systems to 
increase their quality, as indicated by Sucharov 
(2007), have been shown to be important, while 
the general approach of Feathers (2002) has been 
shown to be a useful framework but one that has 
to be adapted to the nature of the legacy system.

In the introduction to this chapter we reported 
on a number of issues that some authors claim 
make the integration of legacy systems, service 
oriented architectures and agile software devel-
opment problematical. In this experience report 
we have endeavoured to suggest that in fact these 
three very different axes of software can be ef-
fectively integrated, with the primary means to 
do so being a comprehensive approach to testing, 
applied at every level of the system from the UI, 
to acceptance tests, to service interface tests to 
developer (unit) tests. With these tests in place the 
agile ability to dynamically refactor live services 
provides the kind of responsiveness that more 
traditional methods could not deliver.

REFERENCES

Chung, S., Davalos, S., An, J., & Iwahara, K. 
(2008). Legacy to web migration: Service-oriented 
software reengineering methodology.  Internation-
al Journal of Services Sciences, 1(3/4), 333–365. 
doi:10.1504/IJSSCI.2008.021769

Elssamadisy, A. (2007). SOA and agile: Friends 
or foes? InfoQ. Retrieved March 29th, 2011, 
from http://www.infoq.com/articles/SOA-Agile-
Friends-Or-Foes

Feathers, M. (2002). Working effectively with 
legacy code. Retrieved March 29, 2011, from 
http://www.objectmentor.com/resources/articles/
WorkingEffectivelyWithLegacyCode.pdf



279

Test Driven Decomposition of Legacy Systems into Services

Heckel, R., Correia, R., Matos, C., El-Ramly, M., 
Koutsoukos, G., & Andrade, L. (2008). Architec-
tural transformations: From legacy to three-tier 
and services. In Mens, T., & Demeyer, S. (Eds.), 
Software evolution (pp. 139–170). Springer. 
doi:10.1007/978-3-540-76440-3_7

Papazoglou, M., & van den Heuvel, W. (2007). 
Service oriented architectures: Approaches, tech-
nologies and research issues.  Journal on Very 
Large Data Bases, 16, 389–415. doi:10.1007/
s00778-007-0044-3

Puleio, M. (2006). How not to do agile testing. 
Proceedings of the Conference on Agile, 2006 
(pp. 305-314).

Sucharov, T. (2007). Mainframe makeovers.  In-
formation Professional, 4(6), 36–38. doi:10.1049/
inp:20070606

Thomas, D. (2006). Agile evolution: Towards 
the continuous improvement of legacy software.  
Journal of Object Technology, 5(7), 19–26. 
doi:10.5381/jot.2006.5.7.c2

Tilkov, S. (2007). 10 principles of SOA. InfoQ. 
Retrieved March 29, 2011, from http://www.infoq.
com/articles/tilkov-10-soa-principles

Visaggio, G. (2001). Ageing of a data-intensive 
legacy system: symptoms and remedies.  Jour-
nal of Software Maintenance and Evolution, 13, 
281–308. doi:10.1002/smr.234

Wilkes, L., & Veryard, R. (2004). Service-oriented 
architecture: Considerations for agile systems. 
CBDI Forum, April 2004.

ADDITIONAL READING

Astels, D. (2003). Test-driven development: A 
practical guide. Upper Saddle River, NJ: Pren-
tice Hall.

Beck, K. (2003). Test driven development by 
example. Boston, MA: Pearson.

Beck, K., & Andres, C. (2004). Extreme pro-
gramming explained: Embrace change (2nd ed.). 
Addison Wesley.

Channabasavaiah, K., Tuggle, E., & Holley, K. 
(2003). Migrating to a service-oriented architec-
ture. IBM Developer Works. Retrieved March 28th, 
2011, from http://www.ibm.com/developerworks/
library/ws-migratesoa/

Feathers, M. (2004). Working effectively with 
legacy code. Upper Saddle River, NJ: Prentice 
Hall.

KEY TERMS AND DEFINITIONS

Agile Software Development: Building soft-
ware using the methods and techniques outlined 
by the agile manifesto, which values individuals 
and interactions over processes and tools, work-
ing software over comprehensive documentation, 
customer collaboration over contract negotiation 
and responding to change over following a plan.

Inflection Point: In the definition used by 
Feathers (2002), an inflection point is a narrow 
interface to a set of classes behind which mean-
ingful changes to the code base can be detected.

Job Definition Format (JDF): A standard 
domain specific XML messaging format devel-
oped by the graphic arts industry to assist the 
development of workflow systems including 
multiple vendors.

Job Messaging Format (JMF): An XML 
messaging format that is part of the Job Defini-
tion Format specification, used to communicate 
events, status information and results between 
JDF agents and controllers.

Legacy System: Systems that may be techni-
cally obsolete but are still mission critical. Often 
too frail to modify and too important to discard, 
they must be reused.



280

Test Driven Decomposition of Legacy Systems into Services

Refactoring: Improving the design of existing 
code without changing its behaviour.

Service: A software component that consists 
of business logic, the data it operates on and an 
interface to access both. A service also has meta-
information, e.g. its interface.

Service Oriented Architecture: A loosely 
coupled architecture of interoperable services that 
may be implemented in different languages on 
different platforms, but communicate using com-
mon messaging formats over standard protocols.

Test Covering: A set of tests that covers the 
behaviour of a small area of a system just well 
enough to provide some ‘invariant’ that can indi-
cate if the behaviour of the system has changed.

Test Driven Development: Designing units 
of code by starting with unit tests and then writ-
ing the unit under test, incrementally building 
units of code using both black box and white 
box testing techniques. The key is to drive the 
design by carefully selecting tests and mercilessly 
refactoring code.


