
Pragmatism over purism? An incremental

approach to the teaching of object-oriented

programming.

D. Parsons

Systems Engineering Division, Southampton

Institute of Higher Education, East Park Terrace,

Southampton, UK

Abstract

The aim of this paper is to explore two contrasting approaches to the teaching
of object-oriented programming, the 'purist' and the 'pragmatic', and to
describe in detail how a pragmatic approach may be formalised and
implemented.

1 To be pure or not to be pure?

There are two schools of thought in the arena of object-oriented languages.
One is that to be object-oriented, a language must be 'pure'; Perhaps the most
vocal exponent of this view is Bertrand Meyer (inventor of the Eiffel
language). The alternative approach is one of pragmatism; That object-
orientation is a tool like any other and that the purity of this tool is not the
issue - its usefulness is the sole criteria by which it should be judged. The key
advocate of this approach is the inventor of C + +, Bjarne Stroustrup. The two
languages of these protagonists (Eiffel and C + +) reflect this differing
ideology. Eiffel is a true object-oriented language, while C++ is a hybrid of
C with various orthogonal extensions to allow object-oriented programming.
Meyer is quoted as saying that 'compatibility with existing software is not an
excuse for polluting the language. The language can be C.. .or it can be object-
oriented, which is completely different' [1]. In contrast, Stroustrup has said 'It
is not right to be pure. It is right to serve your own and other's
needs... any way I have a problem with the word 'pure', because it makes me
think of stormtroopers' [2].

                                                Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



376 Software Engineering in Higher Education

2 Building on third generation skills

Those attempting to teach the object-oriented paradigm to students must
address the question of which approach is more educationally valid, the pure
or the pragmatic? This paper suggests that a pragmatic approach to teaching
object-oriented programming with C + + has a number of advantages,
particularly when dealing with students who have been immersed in third
generation languages. We can teach that object-orientation is a revolution, and
abandon most of our students' existing knowledge, or we can teach that it is
evolutionary, and that there is a gentler path from the known to the unknown.
This paper is based on an attempt to teach object-oriented programming in
C++ using an incremental approach, which meant identifying the discrete
components of the method and establishing the relationships between them.
This conceptual organisation allowed a developmental path to be followed
which led students from the known procedural paradigm, via simple object-
oriented concepts such as encapsulation, to the more subtle aspects such as
polymorphism, multiple inheritance and container classes.

3 What makes a program 'object-oriented'?

It is often said that for a language to be considered object-oriented it must
support encapsulation, inheritance and (run-time) polymorphism. It might be
assumed therefore that for a program to be object-oriented it should embrace
all of these concepts. However, there are many example applications where the
emphasis can be on objects of classes with limited inheritance and little or no
polymorphism, yet the principles of object-orientation are still suitably
demonstrated. It is easy to emphasise the roles of class hierarchies and
dynamic binding with menageries of noise generating animals, simulations of
various flying machines in an airspace or collections of graphical doodles, but
how many applications in practice follow these models? In many contexts the
key elements are the inter-object relationships whereby objects communicate
with one another in 'using relationships' [3] or 'aggregations' and other forms
of object association [4]. In these circumstances, we should be looking less at
hierarchies and more at the ways in which objects pass messages to one
another in order to perform high level functions ('mechanisms' [3]). In this
way we can enable students to write 'object-oriented' programs at a very early
stage without their needing to understand every available technique of object-
orientation. Such applications place stress on modularity, scope, visibility and
message parameters rather than complex hierarchies or object-specific
responses to generic messages. As such they promote good practice in
understanding how object-oriented systems work at the implementation level
without too much conceptual luggage.

                                                Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Software Engineering in Higher Education 377

4 The more it changes the more it stays the same

In taking our students down the long path to object-oriented programming, we
should at least make them aware that some of the skills they already have will
help them on their way. Wirth [5] emphasises the links between activities in
procedural programming and those in object-oriented programming. Table 1
(below) indicates areas which have commonality between the two paradigms.
In each case we can start with a familiar concept and use it as a springboard
for a new concept.

Table 1. Activities in procedural and object-oriented programming

Procedural

data type
variable
function / procedure
function calls

Object-oriented

abstract data type / class
object / instance
method / operation / service
message passing

This approach contrasts with programming style in 'pure' object-oriented
languages in that the 'purist' tool tends to abandon the programmer in an
unknown environment. The novice Smalltalk programmer for instance is forced
to know everything or nothing - since everything is an object and all classes
inhabit a single hierarchy there are no half measures. In contrast, the novice
C++ programmer can gradually introduce objects into procedural programs,
creating working programs almost from the first attempt, first object-based,
then class-based and finally object-oriented. C++ is not, of course, the ideal
teaching language. It does have certain advantages in the marketplace such as
portability, economy, commonality with C and large available libraries of both
traditional functions and classes. However, its main drawback is the
opaqueness of the C syntax which underlies it. Before any C++ can be learnt,
a lot of rather painful C coding must be endured. Nevertheless, C + + has
already superseded some of Cs more tortuous aspects like the i-o functions of
stdio.h, and a few well chosen class libraries can overcome many of its other
complexities.

5 The incremental path

The main theme of this paper is that the object-oriented paradigm may be
decomposed into C++ based teaching units, each of which provides a logical
progression from the previous stage. Student activities providing the means for
integrating these elements into a general understanding can be easily developed
to encourage reuse and genericity wherever possible.

                                                Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



378 Software Engineering in Higher Education

Clearly, the first step in any teaching of object-orientation has to be the object,
and therefore the abstract data type (the class) which specifies each object.
Students familiar with procedural programming will already know what a data
type is, and also what a data record is. It is but a short step from
understanding the relationship between a file structure and a data record (which
may be seen as a data type composed of more primitive data types), to
understanding the relationship between a class and an object. Again there is a
conflict of ideology between authors, some emphasising the data aspects of
objects, others emphasising responsibility. However, it is easier to understand
data, and by extension the operations on that data, than to understand
operations before discussing data. It is the abstraction of behaviour as opposed
to the concreteness of data which makes this data driven approach more
assimilable for the first-time object-oriented programmer.

Once students can create classes and objects, then they can learn to pass
messages to those objects. This can be done in an otherwise procedural
context, allowing a gentle learning curve. They can then learn the difference
between dynamic and non-dynamic objects and the syntax appropriate to each.
Although it is a rather unexciting aspect, it is crucial that students understand
the subtleties of object scope, visibility and lifetime, and the memory
management implications of these, before attempting ambitious object-oriented
programs.

6 Inheritance, but not too much

Because inheritance is such an important aspect of object-orientation, it needs
to be introduced as soon as classes and objects are understood. However, its
role should not be overemphasised. Students tend to lay too much stress on the
rigid, static structures of a class hierarchy, sometimes at the expense of
understanding what happens dynamically when a program runs - a
classification hierarchy has its uses, but objects are more important than
classes. The Smalltalk approach whereby every class is in a single hierarchy
is simply not necessary and overcomplicates any analysis and design which
attempts to allow for this.

One aspect of object-orientation which is often skimmed over in texts is the
containment relationships between objects. However, the various forms of
aggregation (including containers) should perhaps be given equal status to the
:lass relationships defined by a hierarchy. There are a number of reasons for
his. First, the role of aggregations in providing interfaces to other objects
IBooch's 'mechanisms') is an important part of the architecture of a program.
Second, objects cannot change their class at run time, but they can change their
•oles in an aggregation. For example, a 'Checkout' object cannot become a
Checkout With Weighing Scale' object if these are different classes. However,

                                                Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Software Engineering in Higher Education 379

a 'Checkout' object can dynamically aggregate a 'Weighing Scale' object at
run time. In this respect, aggregation is more flexible than inheritance. Third,
the delegation form of aggregation can overcome semantically problematical
uses of inheritance where private derivation is used to implement classes in
C + + which are not truly 'a kind of their base classes. Finally, it may be a
tool for portable systems by simplifying the representation of components of
an object [6].

7 Polymorphic polymorphism

Perhaps the most difficult thing to teach in object-orientation is polymorphism.
Polymorphism (derived from the Greek 'polumorphos' - having many forms)
is problematical because there are many forms of polymorphism (hence
polymorphism is polymorphic!) Although it is easy to make generalisations
about the role of polymorphism ('passing responsibility for interpreting a
message to the object', 'sending a generic message to a heterogeneous
collection of objects' etc.) it is perhaps harder to explain all the different ways
in which this may be implemented. As Cardelli and Wegner indicate in their
taxonomy [7], there are various categories under which polymorphism can
appear (figure 1), though not all of these are particularly object-oriented - ad
hoc polymorphism does not have to be used as part of an object-oriented
program.

Polymorphism

Universal Ad Hoc

Parametric Inclusion Overloading Coercion

Figure 1: Cardelli and Wegner's taxonomy of polymorphic techniques.

In approaching polymorphism in C + +, we need to explain a range of different
aspects which can be categorised under the general headings of 'method
polymorphism' (object methods exhibiting polymorphic behaviour according
to the class of the object receiving the message) and 'polymorphism by
parameter' (polymorphic behaviour according to the types or classes of
message parameters). In terms of method polymorphism, in C + + we have

                                                Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



380 Software Engineering in Higher Education

both function overloading (in a classification hierarchy this is 'inheritance' or
'inclusion' polymorphism) and operator overloading, though both of these may
be regarded as forms of polymorphic object method because they are used in
semantically similar ways. In addition, the crucial differences between static
and dynamic binding have to be addressed for all types of object method. In
polymorphism by parameter, there is an important distinction to be drawn
between overloading (object methods made polymorphic by differences in
parameter lists) and genericity (classes or methods made to handle objects with
polymorphic behaviours). Although both of these techniques rely on parameter
lists for their polymorphic behaviour, they have very different roles to play.
Thus a number of different types of polymorphism can be applied to an object-
oriented C++ program, not all of which fit into the generalised descriptions
of what polymorphism means. Figure 2 shows a number of different areas in
which polymorphism may be explored, again beginning with the more
assimilable forms (simple overloading of in-class methods for example) and
working through to the more subtle (dynamic binding for run-time
polymorphism).

OBJECT-ORIENTED POLYMORPHISM

Method Polymorphism

Inheritance Polymorphism Operator Overloading

Run-Time Polymorphism
(Dynamic Binding)

Polymorphism bv Parameter

Genericity In-Class Method
Overloading

Figure 2: Approaching aspects of polymorphism with the facilities of C + +.

Finally, students must learn to create and use containers in order to manage
their dynamic objects, and to understand the trade off between genericity and
functionality. C++ templates are a useful tool here, since they demand a full
understanding of how generic messages must be intercepted by objects of
unpredictable classes, giving a context for techniques such as operator
overloading (particularly the relational operators) and dynamic binding (virtual
functions in C++).

                                                Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Software Engineering in Higher Education 381

Beyond polymorphism, other aspects of the paradigm can be seen as merely
extensions of the key elements. Multiple inheritance is useful, but only on
occasion. Object persistence, though vital to any realistic application, is an
implementation detail; ideally it will be a transparent process via an object-
oriented database. Though students can be taught how to stream their objects
to and from files, the detail is less important than the idea that objects can
persist between program runs and different applications.

8 Summary

In general, the incremental approach can be summed up as follows:

1. Students should be made aware of the links between known and new
techniques

2. Object-based and class-based programs are the best first step to object-
orientation

3. Hybrid programs can be successful object-oriented programs, placing
the stress on message passing and object lifetimes rather than on
classification hierarchies and polymorphism

4. The static class relationships of inheritance are important, but should
be balanced by the dynamic object relationships of aggregations and
associations

5. Polymorphism has many facets, some of which are simpler to
implement and understand than others. Dynamic binding is the final
piece of a complex jigsaw which may be built up piece by piece from
simple ad hoc beginnings such as overloaded functions.

9 Results and conclusion

How successful, then, is this approach in conveying the object-oriented
paradigm to students? This can be informally evaluated to some extent by the
assignment work completed by the students being taught using this incremental
approach compared with work from a similar group from the previous year.
With the previous group, many of the key concepts had been introduced
simultaneously (albeit using C++) with graphics and class libraries. This
approach was based on the common assumption that graphics objects are the
simplest way to demonstrate object-orientation in practice because the
hierarchies (e.g. 'line' is a kind of 'graphics object') and polymorphic
responses to generic messages (such as 'draw') are allegedly obvious. In
practice the students' work and individual responses suggested that more
object-oriented concepts could be successfully delivered (ie actually understood

                                                Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



382 Software Engineering in Higher Education

and used by the students) via the incremental approach, though it took longer
to apparently show results. It seems that the greater understanding of the
fundamental techniques provided by a step by step approach eventually gave
the students more confidence to write truly object-oriented programs, whereas
the group which began by being immersed in object-orientation in all its
aspects seemed to reach something of a wall where they lacked * ownership' of
the software and found complex structures such as generic containers almost
impossible to implement. Although there is a case for saying that there is no
need to implement complex structures when we should be reusing those which
already exist, there is also a case for saying that students should fully
understand everything they do. We can train people to make certain things
happen, but education is about understanding why those things happen.

In conclusion, we may make a case for a pragmatic approach to the teaching
of object-oriented programming on the grounds that reuse is the ultimate aim;
Reuse not only of software components but more importantly of students'
experience and understanding. The incremental path reuses existing knowledge
to build new classes of understanding.

References

1. Meyer, B. in Watts, W. La resistance, EXE magazineVol 6, Issue 11,
May 1992 p.29.

2. Stroustrup, B. in Watts. W. Yet More Bjarne, EXE magazine, Vol 6,
Issue 9, March 1992 p.32.

3. Booch, G. Object-Oriented Analysis and Design With Applications (2nd
edition), Benjamin/Cummings, California, 1994.

4. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen W.
Object-Oriented Modeling and Design, Prentice Hall, New Jersey,
1991.

5. Wirth, N. OOP meets Modula-2, EXE magazine, Vol 4, Issue 11, May
1990, pp. 12-16.

6. Corbett, E. A Framework for Application Class Design, EXE
Magazine, Vol 7, Issue 10, April 1993, pp. 12-16.

7. Blair, G., Gallagher, J., Hutchison, D. & Shepherd, D. Object
Oriented Languages, Systems and Applications, Pitman, London, 1991
p.81.

                                                Transactions on Information and Communications Technologies vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 


