Run Time Reusability in Object-Oriented Schematic
Capture

David Parsons, Tom Kazmierski

Southampton Institute, U.K.
{dave.parsons, tjk } @solent.ac.uk

This poster presents some important aspects of the architecture and functionality of an
object-oriented schematic capture system for electronic circuit design and simulation.
In particular it introduces the terms 'virtual polymorphism' and 'visual polymorphism'
to describe techniques that provide run-time extensibility and flexible code generation
within a visual environment.

Schematic capture systems convert a graphical representation of an electronic
circuit into some other form for simulation or synthesis. This particular system
generates code in VHSIC Hardware Description Language - Analogue and Mixed
Signal (VHDL-AMS). This language, standardised by the IEEE in 1997, allows for
hardware descriptions that include both digital and analogue components.

An important aspect of VHDL-AMS is that it allows for new types of component
to be described using behavioural definitions rather than simply building larger
aggregations out of sub-components that already exist in libraries. To enable a user to
define new component types via the graphical interface, the system is built using an
approach called 'virtual polymorphism'. This term is used to describe a situation
where application level objects of different types (in this case electronic components)
appear to have polymorphic behaviours even where they are represented by objects of
the same class. This is achieved via a reflective architecture that allows component
objects to be configured at run time by meta-data, enabling them to invoke various
dynamically bound aggregations to provide their behaviour. For example, different
component objects use objects of other classes to draw themselves using standard
symbol sets and to generate code. By basing the system on this architecture, rather
than using a traditional classification hierarchy of component classes, run time
extensibility is provided by routines that dynamically add to the meta-data.

The second important aspect described by the poster is termed 'visual
polymorphism'. This concept is based on a particular characteristic of VHDL-AMS
code generation for mixed mode (digital and analogue) circuits, where we find that a
single type of component may be represented by one of a number of different code
models depending on the nature of its connectivity to other elements of a circuit.
Visual polymorphism describes how a single visual image of a component
encapsulates the automatic selection of the appropriate code model. A single gate
component, for example, is able to select the appropriate models from possibilities
that include digital, analogue or mixed mode input. It does this by giving digital
component objects the ability to interrogate their external connections to find out
whether they are joined to terminal nodes (analogue objects) or signal nodes (digital

S. Demeyer and J. Bosch (Eds.): ECOOP’98 Workshop Reader, LNCS 1543, pp. 561-562, 1998.
© Springer-Verlag Berlin Heidelberg 1998



562 D. Parsons and T. Kazmierski

objects). From this information, each component is able to invoke a model with an
appropriate type signature via its code generating objects.

This use of both virtual and visual polymorphism demonstrates that we can apply
polymorphism as a conceptual approach, allowing objects to behave differently in
different contexts, without necessarily using traditional implementation mechanisms.
Systems can thus be made more flexible and easily extensible.



