
www.SYS-CON.com/JDJ32 January 2005

he Java Technology for the Wireless Industry specifi ca-
tion (JTWI) encompasses a standard set of J2ME APIs
for mobile device development that is being widely
adopted by mobile telephone service providers, mak-

ing it an important platform for Java developers.
 Its core component, the Mobile Information Device
Profi le (MIDP), provides a number of specialized libraries for
multimedia and games development; however, its underlying
subset of general purpose Java classes is strictly limited. In
addition, support for persistence via the Record Management
System is relatively poor. This raises the question: Is JTWI a
realistic application development tool or is it only good for
games and other software trivia?
 In this article we try to answer this question by explor-
ing the viability of MIDP as a tool for nontrivial application
development. An enterprise application that includes mobile
components might reasonably expect to devolve some of its
business processes and data management to mobile devices.
Our chosen example, which considers both of these aspects,
is a proposed implementation of the Java Data Objects (JDO)
specifi cation, which includes a number of interesting features
that highlight the constraints of working with J2ME APIs
for limited devices. We describe the issues around the de-
velopment of such an implementation, the limitations that
MIDP imposes, suggest some useful workarounds and archi-
tectural options, and fi nally draw some conclusions about
the usefulness of JTWI as a set of APIs for serious application
development.
 Handheld computers such as the Pocket PC and the Palm
can support reasonably complete Java Application Program-
ming Interface (API) sets that can be used to develop serious
enterprise applications, but smaller devices such as mobile
telephones only support Java APIs that have been signifi cantly
reduced to work within the confi nes of limited hardware. There
is no support for the types of persistence mechanisms that we
have come to expect on larger Java platforms. The question
we address in this article is whether the mobile telephone is a
viable platform yet for serious business or scientifi c applica-
tions that need to store and process data locally and expect
the services of a reasonably rich set of Java APIs. To make this
assessment, we look at the JTWI specifi cation, which provides
APIs that can be supported by the limited hardware available
on current mobile telephones. In particular, we examine the
MIDP specifi cation, which is a core component of JTWI.

 To date, we have seen considerable development in
areas such as mobile games development, but more seri-
ous business and scientifi c applications will need to be de-
veloped if JTWI is to be a useful component of enterprise
software systems. Since such systems are likely to require
considerable support for persistence, we focus on the JDO
specifi cation and examine some potential issues that arise
when attempting to implement this specifi cation using
MIDP, extrapolating from this analysis to assess the general
usefulness of MIDP as a general purpose application
programming platform. We also look at how MIDP devices
fi t into larger distributed architectures that can mitigate
the limitations of mobile telephones as Java application
platforms.

The Java 2 Micro Edition (J2ME)
 To cater to a wide range of small devices and application
requirements, the J2ME architecture (see Figure 1) pro-
vides multiple confi guration and profi le layers that overlay
the specialized Java Virtual Machine (JVM) and operating
system. Confi gurations defi ne the minimum set of available
JVM features and class libraries for a specifi c category of de-
vice and are hardware focused, while profi les defi ne the set
of APIs available for a particular market category of devices
and are software focused.
 J2ME confi gurations specify the minimum requirements
for memory, Java language features, JVM support, and run-
time libraries. There are two standard J2ME confi gurations:
the Connected Device Confi guration (CDC) and the Con-
nected Limited Device Confi guration (CLDC). For the small-
est portable devices, such as mobile telephones, the stan-
dard confi guration is the CLDC. This confi guration requires
a very small virtual machine, such as Sun’s KVM (Kilobyte
Virtual Machine) or CLDC HotSpot Implementation, with
footprints of only about 50–80K. These virtual machines
don’t have to comply with the full JVM specifi cation, nor do
they have to support the complete Java language specifi ca-
tion. API support is limited to a selection of classes from a
few packages from the Java 2 Standard Edition (J2SE), plus
the Generic Connection Framework (GCF), comprising
a hierarchy of connection interfaces (and the Connector
factory class) that are intended to provide a generic way
of expressing operations on connections regardless of the
actual protocol.

David Parsons is a

senior lecturer in

information systems at

Massey University, Auckland,

and a knowledge engineer

for Software Education

Associates, Wellington.

Until last year he was

the director of emerging

technologies at Valtech,

London, and prior to

that principal technologist

at BEA Systems.

d.p.parsons@massey.ac.nz

by David Parsons, Ilan Kirsh,
and Mark Cranshaw

T

JAVA TECHNOLOGY
 WIRELESS INDUSTRY

Toys or tools?

Feature

 WIRELESS INDUSTRYFOR
THE

33January 2005www.SYS-CON.com/JDJ

Toys or tools?

Java Technology for the Wireless Industry
 The key goal of the JTWI specifi cation is “to minimize API
fragmentation in the mobile phone device market, and to
deliver a predictable, clear specifi cation for device manufac-
turers, operators, and application developers” (http://jcp.
org/aboutJava/communityprocess/fi nal/jsr185/index.html).
 Thus we can reasonably expect the next generation of
Java-enabled telephones to support these technologies. The
specifi cations included within JTWI are:
• Mandatory specifications:
 –Mobile Information Device Protocol (MIDP) 2.0
 –Wireless Messaging API (WMA) 1.1
• Optional specification:
 –Mobile Media API (MMAPI) 1.1
• Minimum configuration on which JTWI is built:
 –Connected Limited Device Protocol (CLDC) 1.0

 From an application development perspective, the most
important API is MIDP (and by implication the CLDC upon
which it builds), since these are the APIs that provide a subset
of the standard Java packages found in the Java 2 Standard
Edition, along with additional APIs specifi cally tailored for
mobile development. One important issue with JTWI is that it
mandates only CLDC 1.0, not CLDC 1.1, which, as we will see,
introduced some important new features.

The Mobile Information Device Profi le
 The MIDP is one of two profi les (the other being the In-
formation Module Profi le) that works on top of the CLDC. It
provides graphical interfaces for interactive applications and
is the standard Java profi le for mobile telephone development
under the JTWI specifi cation.
 There are seven packages containing the additional classes
and interfaces of the MIDP, providing user interface features
at two levels of portability, sound support, certifi cate-based
authentication, persistence, and the MIDlet framework for de-
ploying classes into a MIDP environment. There are also extra
classes in the javax.microedition.io and java.util packages.
 The set of APIs available to a MIDP developer will be the
set of classes in the CLDC and MIDP. Figure 1 summarizes the

relationships between the relevant confi guration and profi le
APIs and the underlying J2ME JVM.

What Is Missing from MIDP?
 To consider how viable MIDP is as a general-purpose pro-
gramming framework, it’s useful to explore which packages
and classes are excluded from it when compared with the
standard edition. Of course, MIDP provides its own classes for
graphics and sound, so there are no AWT, Swing, or sound-re-
lated packages from the standard edition. Similarly, MIDP has
its own (limited) security classes, so there are no javax.security
packages either. Since the Generic Connection Framework
covers connectivity, packages relating to CORBA and network
connections are also excluded. RMI likewise is not part of
MIDP; although there is a separate J2ME RMI profi le, it can
only be used with the CDC confi guration, not with CLDC.
Other missing packages are those that relate to JavaBeans,
refl ection, XML, printing, and JNDI.
 Although MIDP excludes many packages that are pres-
ent in the standard edition, many of these have equivalents
in the MIDP packages or, like printing, are not particularly
important for mobile devices. However, it is in those packages
that are included in MIDP that we fi nd the most constraining
factors, since these packages have far fewer classes in MIDP
than in the standard edition. For example, MIDP includes only
one interface and nine classes from java.util, as opposed to
14 interfaces and 41 classes in the standard edition (version
1.4), principally due to the absence of the Java 2 Collections
Framework.

MIDP Persistence with RMS
 In the context of enterprise Java development, there are
a number of standard APIs that can be used to support data
and/or object persistence: serialization, JDBC, Java Data
Objects, and entity Enterprise JavaBeans (Enterprise Edition
only). In contrast, MIDP does not automatically support any
of these persistence mechanisms. The CLDC java.io package
contains only the lower-level streams, readers, and writers
and doesn’t contain any fi le or object streams, or, indeed, the
Serializable interface.
 This means that persistence-related code in MIDP differs
considerably from other Java programming contexts and uses
the Record Management System (RMS). The RMS comprises
variable length record stores, each of which is a collection
of variable size binary data records. Each record store has
a unique name, and each record within a store has a non-
reusable integer index that acts as a primary key. Although
individual operations on a record store are atomic, there is no
transactional support apart from a version number that can
be used to support manually implemented locking strategies.

The Java Data Objects Specifi cation
 The Java Data Objects specifi cation is an output of the Java
Community Process (JSR 12), which had its fi rst fi nal release
in April 2003. JDO defi nes an interface-based standard for the
persistence of domain objects. There are currently around 20
vendors offering JDO implementations with varying levels of
specifi cation compliance. JDO implementations can be used
with a range of data stores and across all three editions of the
Java 2 platform and is a recommended persistence mecha-
nism for data-centric applications on mobile devices.
 JDO can be used in the context of a nonmanaged or a
managed scenario. The former case refers to a typical two-

Ilan Kirsh is a

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

???@???.com

NEED
HEAD
SHOT

Figure 1 The APIs for MIDP development

CLDC (configuration)

MIDP (profile)

J2ME Virtual Machine

Java language syntax, but:
• No finalization
• Limi ted error and exception handling
• Limi ts to threading
• No user defined class loaders

Subset of classes from p ackages:
• java.lang
• java.lang.ref
• java.io
• java.util

+ additional package
• javax.microedition.io

Additional Packages:
• javax.microedtion.midlet
• javax.microedition.lcdui
• javax.microedition.lcdui.game
• javax.microedition.media
• javax.microedition.media.control
• javax.microedition.rms
• javax.microedition.pki

+ additional classes from
• javax.microedition.io

+ the following classes:
• java.util.Timer
• java.util.TimerTask
• java.lang.IllegalStateException

Mobile Telephone J2ME Application

www.SYS-CON.com/JDJ34 January 2005

tier or embedded application, the latter to a server-based
architecture with the JDO implementation resident within
a J2EE container. In both cases the JDO implementation
hides Enterprise Information System (EIS) specific issues
such as data type mapping, relationship mapping, and
data retrieval and storage from the application compo-
nents. In addition, the managed scenario allows the appli-
cation to make use of J2EE container mechanisms for trans-
actions, security, and connection management. Clearly
any JDO implementation within J2ME would be nonman-
aged, though a distributed architecture that used JDO
on mobile devices and also on a remote server would be
possible.
 The rationale behind JDO is that an application needs be
extended only once to encompass the JDO architecture and
will then be able to access multiple and different EIS: object
database systems, relational database systems, mainframe
transaction processing systems, or ERP systems. The EIS
vendor will be able to create a single JDO implementation and
in doing so will allow pluggable access to any JDO-compliant
application. The ability to run JDO in a MIDP context depends
on the ability of the JDO implementation to provide the
services required by the specification using only the resources
available in a small device.
 From the application perspective the primary interface is
PersistenceManager, supported by the Query and Transac-
tion interfaces. An object implementing this interface will be
responsible for the management of the JDO instance life cycle
including reading and writing from the data source, and work-
ing with Query and Transaction objects to create the illusion
that the entire network of objects reachable from the applica-
tion, including persistent objects, are resident in memory at
the same time. Within a nonmanaged environment a JDO
application will retrieve a PersistenceManager directly from
a PersistenceManagerFactory instance provided by the JDO
implementation.
 Candidate persistent classes must implement the
PersistenceCapable interface, typically through the use of
an enhancement tool provided as part of the JDO imple-
mentation. Enhancement is carried out after the domain
model is complete and is usually applied to the compiled
byte code, making it a completely transparent process. The
binary compatibility of JDO instances means that they are
portable between EISs without recompilation, providing a
JDO implementation is available. It would not be realistic to
expect a mobile JDO implementation to include the develop-
ment tools, such as the byte code enhancer, for JDO. Mobile
devices are unlikely to be used as software development
platforms. Rather, the device would be required to act as a
JDO client, downloading pre-enhanced byte code and using
the JDO client APIs. However, it’s not enough for a JDO client
application to have only byte code, since any class that is to
be persisted must have a corresponding entry in an XML file,
known as the persistence descriptor file. The developer may
supply a separate descriptor file for each class or a single file
for a package. This file, containing key mapping information,
must be available to the JDO implementation at runtime.
Therefore a MIDP JDO implementation would need to in-
clude both the JDO client APIs and the means to process the
persistence descriptor.

Implementation Issues for JDO on MIDP
 Current JDO implementations cannot run on highly
constrained devices using the J2ME CLDC configuration. The
smallest realistic JDO platform is currently a CDC configura-
tion using a larger nonstandard library, such as the IBM JCL
Max available with the J9 VM. This kind of configuration is
appropriate for Pocket PC type devices but not for mobile
telephones.
 There are a number of reasons why implementing JDO in
a CLDC/MIDP environment is problematical. The core issue
is the required footprint size, because a JDO implementation
would require space for the implementation itself, plus the
larger byte code of classes enhanced to become persistent.
Object data would have to be stored using RMS or a propri-
etary JDBC implementation. Depending on the way that it
mapped the objects, overall storage space requirements for
JDO persistence would probably be larger than the most op-
timized equivalent using direct RMS. Another problem would
be the speed of RMS, since it’s just a set of indexed flat files
that require either direct indexed access or sequential access
to locate data. This could be very inefficient when attempting
to implement the JDO query language, JDOQL.
 As we’ve discussed, JDO also requires an XML persistence
descriptor that is accessible at runtime. A full validating parser
to process this file would be much too large, but there are
highly optimized nonvalidating XML parsers designed for use
with J2ME, such as kXML or others that implement the XML
APIs of the J2ME Web Services Specification. An alterna-
tive strategy might be to use some other way of providing
metadata; for example, using the optional JAD (application
descriptor) or manifest files.
 Another limitation of the MIDP APIs is that they don’t in-
clude the JDK 1.2 collections framework, so the only container
classes that are available are the Vector and Hashtable from 1.x
versions of Java, which is inconsistent with the JDO require-
ments of at least supporting the HashSet. We could develop
some kind of wrapper class around the Vector to produce a
different type of container that can be used in a J2ME context;
but this doesn’t address the further issue that Vector is syn-
chronized, which could impact performance. Another option
is to write a custom HashSet class (using an array of linked
lists) and/or other custom library classes.
 To mitigate the potentially large footprint resulting from the
proliferation of additional classes necessary to make JDO func-
tion in a MIDP context, a byte code shrinkage and/or obfusca-
tion tool could be used. Since the main shrinkage benefit is
gained where only small parts of libraries are used, the already

Feature

Mark Cranshaw is a

????????????????????

?????????????????????????

?????????????????????????

?????????????????????????

?????????????????????????

?????????????????????????

?????????????????????????

?????????????????????????

?????????????????????????

??????????????????????????

?????????????????????????

?????????

???@???.com

NEED
HEAD
SHOT

 Figure 2 Client JDO architecture for MIDP

ServerMobile Device

JVM / CLDC / MIDP

JDBC Driver

JDO Implementation

Application

Data Store

35January 2005www.SYS-CON.com/JDJ

small J2ME libraries would not necessarily yield a major
change in footprint. For example, test results show only a 16%
reduction in size for a sample J2ME application, as opposed to
a best result of 91%.
 In addition to limitations of the MIDP APIs, the JTWI
specification imposes further restrictions by mandating only
version 1.0 of CLDC. This means that JDO implementations
based on CLDC 1.1 could not be guaranteed to work on a
device that was JTWI compliant. One significant issue here is
the lack of floating point support, which is required by JDO
but only supported in CLDC from version 1.1.
 Similarly, options for providing the required support for the
cache are restricted. Implementing a JDO-compatible cache
requires weak or soft references, because the JDO specification
requires that persistent objects remain in the cache as long as
they are in use by the application, but will be removed from the
cache automatically when the application stops using them.
Because the application does not report when objects are
disposed of, the only way for a JDO application to know that
an object can be removed from the cache is to use weak or soft
references.
 CLDC does not include support for soft references and
weak references have only been supported since version 1.1.
An alternative approach for managing the cache could be to
hold objects in the cache only when a transaction is active.
When the application reports the transaction closed, all the
objects that were retrieved during that transaction could
be removed from the cache. This approach was common in
object database implementations for older Java versions in
which weak or soft references were not provided.
 Given these constraints, a JDO implementation for MIDP
cannot easily meet the full JDO specification and pass the
Technology Compatibility Kit (TDK) tests. It would be realistic
to follow the model adopted by Oracle TopLink of support-
ing the JDO APIs as closely as possible within the constraints
imposed. Braig and Gemkow in their “The BonSai Principle”
article demonstrate a similarly cut-down implementation,
supporting only parts of the API (e.g., no query language)
based on AspectJ. However, their implementation does at least
run within the confines of a MIDP environment.
 It may be that the best that can be achieved given current
constraints is an architecture where remote proxies are used
in combination with the JDO implementation running on the
server. This should not be seen as a purely negative situation,
since any enterprise-level application is likely to require dis-
tributed access to applications and data that would not benefit

from very heavyweight mobile clients. Rather, the bulk of the
system’s services and data would be server-centric, with only
small subprocesses and data caches being devolved down to
individual devices. In this type of architecture, a JDO imple-
mentation could encapsulate the distributed cache manage-
ment required and assist in the transparency of developing
distributed applications.

JDO Architectures for MIDP Devices
 A MIDP application can benefit from using JDO in two dif-
ferent scenarios. In the first scenario, the data store is located
on a central server and a MIDP application running on a client
mobile device uses JDO to access the remote data. The JDO
layer in this case functions as a high-level wrapper for com-
munication with the remote server’s data store. In the second
scenario, JDO is used to manage local data on the mobile de-
vice. The JDO layer in this case functions as a high-level wrap-
per around the MIDP RMS mechanism. In both scenarios,
JDO provides a similar, easy-to-use API for managing the data,
whether local or remote, using the application domain model.
Each scenario, however, requires a different design solution.

Client JDO Architecture
 A common technique in the design of JDO implementa-
tions is to build a JDO-JDBC bridge. An implementation that
functions as a wrapper layer around JDBC can easily support a
wide range of data sources. Figure 2 shows a naive architecture
for using a client JDO implementation of MIDP based on this
approach.
 In this architecture, the data store is managed by a remote
process that runs on a central server. A JDBC driver on the
mobile device communicates with the remote server process,
while the JDO implementation functions as a layer between
the MIDP application and the JDBC driver.
 This architecture has several disadvantages. First, because
the entire JDO implementation, including the JDBC driver, is
running on the mobile device, substantial memory resources
are required. Second, standard JDO operations such as con-
verting queries from JDOQL to SQL (i.e., from the query lan-
guage of JDO to a format that a JDBC driver can handle) might
be too slow on the standard CPU of a mobile device. A further
issue is the limited number of JDBC drivers that are available
today for MIDP.

Client/Server JDO Architecture
 Because of the problems associated with deploying the
entire JDO implementation on the mobile client, a more
realistic architecture would be to develop a client/server JDO
framework (see Figure 3). In this architecture the JDO imple-
mentation is split between the mobile device and the server. A
“fat” JDO process runs on the central server, communicating
with the data store using a JDBC driver.
 On the mobile device, the MIDP application uses a thin
JDO client library to access the data store. Only operations
that must be implemented on the client side are included in
the thin JDO client library, and all other operations are imple-
mented by the JDO server. For instance, converting queries
from JDOQL to SQL should be done on the server side due
to the limited resources, in terms of memory size and CPU
speed, of the mobile device. Figure 3 Client/server JDO architecture for MIDP

ServerMobile Device

JVM / CLDC / MIDP

Thin JDO Client

Application

JDBC Driver

Fat JDO Server

Data Store

www.SYS-CON.com/JDJ36 January 2005

 To keep the footprint of the client as small as possible,
some features of JDO, such as supporting local queries on
memory collections (which, if supported, would have to be
implemented on the client), may be omitted. This would
mean the loss of full JDO compatibility.
 The client/server JDO architecture is very flexible and can
be tailored according to requirements. For example, instead
of using a two-tier architecture, in which the data store and
the JDO server are located on the same machine, a three-tier
architecture can be used, deploying them on two different
machines. Another design change is required when a JDBC
driver is not available, for example, if the data store is an ob-
ject database. In that case the JDO server is expected to access
the data store directly.

Local Storage JDO Architecture
 There are many benefits in storing the application data on
a central server, but in some situations local storage may be
preferred. For example, a MIDP application that manages a
contact list or a personal organizer should keep the data lo-
cally on the mobile device (possibly in addition to a backup
of that data on a remote server). This can provide a faster
response time and also ensures the availability of data when
the server is unreachable because of network problems or
maintenance, but the JDO implementation, which acts as a
wrapper around the RMS APIs, is complex (see Figure 4).
 To understand what is expected from local storage JDO
for MIDP, it might be helpful to distinguish between two
types of JDO implementations: those that provide JDO sup-
port for relational databases by implementing a JDO-JDBC

bridge and those that use object databases to support the
JDO APIs. Because object databases do not rely on another
database system as back-end storage, they must provide
all the services that a standard database system provides,
including (among others) storage management, lock
management, query processing, and transaction support.
For example, object database JDO implementations can-
not convert JDOQL into an SQL query that is executed by
a relational database, but rather have to include their own
mechanism for processing and executing queries.
 A local storage JDO implementation for MIDP would be
very similar to a JDO object database implementation. Such
an implementation has to support all the standard services
that a database provides and everything has to be implement-
ed on the mobile device. RMS as a low-level storage system
is at least as good as binary files, but does not provide the
database services that JDBC provides.
 A storage solution can be based on allocating the first
record in the RMS record set for general database informa-
tion and an additional record for every object and every
class schema. Other common internal database data struc-
tures, such as BTree+ for indexes, can be implemented by
multiple RMS records (for instance, every node in the tree
could be stored in a record). We have to consider whether
the local management of such data structures is realistic
because of the memory resources that they consume on
the device, both for storing the data structures and in the
implementation byte code that they add. A more appropri-
ate solution might be to avoid supporting indexes (which
are not required by the JDO specification) and to process
queries by iteration over all the objects one by one (using
RMS filters).

Hybrid Architecture
 The most flexible solution for JDO on MIDP would be a
hybrid architecture that included elements of both the cli-
ent/server and local storage approaches. This would provide
the benefits of a fully featured JDO implementation running
in the server, plus the ability to maintain disconnected local
data to maintain quality of service (see Figure 5). Of course,
this type of solution is much more complex, since it requires
the JDO implementation to manage the distributed data
that is being cached on mobile devices. We can expect the
development of systems using this kind of architecture to be
supported by implementations of the Java synchronization
APIs.

Conclusion
 The current version of the MIDP specification is an interim
set of APIs that reflects a particular point in the development
of mobile telephone technology. At present, mobile phone de-
velopers must work within the constraints of current devices
and work around the constraints of the platform as best they
can. Although the limited CLDC/MIDP libraries constrain a
number of aspects of Java application development, there
are a number of initiatives in place to support applications
migrating down to smaller devices, including small footprint
XML parsers and databases.
 Regarding JDO and whether or not it could be imple-
mented to run on a MIDP device, our conclusion is that

Feature

 Figure 4 Local storage JDO architecture for MIDP

Mobile Device

JVM / CLDC

MIDP (including RMS)

JDO Implementation

Application

Data Source
(RMS Rec ord Set)

 Figure 5 Hybrid architecture

Server

Mobile Device

MIDP (including RMS)

JDO Implementation

Application

JDBC Driver

Fat JDO Server

Data Store

JVM / CLDC

Data Source

(RMS Record Set) Data
synchronization

37January 2005www.SYS-CON.com/JDJ

while MIDP alone cannot realistically host a full JDO imple-
mentation, a distributed implementation that combines
local processing with server support can indeed meet our
application needs. Not only that, but such an architecture
actually opens up a more challenging set of options for truly
distributed systems that provide for widely distributed data
and processes.
 The real challenge for MIDP developers is to build appli-
cations that not only work locally on a single device but can
interact and synchronize with multiple nodes of different types
in a disparate architecture. In practice, running JDO on a single
device provides few advantages over alternative APIs for data
access. However, a distributed JDO implementation that inte-
grated and synchronized data across multiple nodes, encapsu-
lated behind a single distributed object model, could be a very
valuable tool.
 From our discussion of JDO as an example of serious ap-
plication development, we can see that developing software
for mobilized architectures requires us to consider a range
of aspects of design and implementation to identify the
optimum configuration. MIDP alone cannot provide a
fully featured Java deployment platform, but by playing
to its strengths, such as the ability to maintain a persistent
local data cache and supporting it with server-side resourc-
es, it opens up a range of new opportunities in software
development.

References
• Kochnev, D., and Terekhov, A. “Surviving Java for

mobiles.” IEEE Pervasive Computing, Vol. 2, no.2, June
2003.

• Sun Microsystems. (2003). “JSR-000185 Java Technology
for the Wireless Industry 1.0 (Final Release).” Java
Community Process: http://jcp.org/aboutJava/commu-
nityprocess/final/jsr185/index.html

• JDOCentral, Developer’s Community for Java Data
Objects: www.JDOCentral.com

• Reese, G. (2003). Java Database Best Practices. O’Reilly.
• ProGuard Java Class File Shrinker and Obfuscator. Test

results: http://proguard.sourceforge.net
• Java Data Objects Expert Group, “JSR-000012 Java Data

Objects 1.0.1 (Maintenance Release), 2003, section 5.5.4.”
Java Community Process: http://jcp.org/aboutJava/com-
munityprocess/final/jsr012/index2.html

• Dubé, J.; Sapir, R.; Purich, P.; and Siegal, E. “Oracle
Application Server TopLink - Application Developer’s
Guide 10g (9.0.4).” Oracle Technology Network, pp.
470–486, 2003: http://download-west.oracle.com/docs/
cd/B10464_01/web.904/b10313.pdf

• Braig A., and Gemkow, S. “The BonSai Principle
– Persistenz in der Java 2 Micro Edition.” Java Spektrum.
September 2002: www.sigs.de/publications/js/2002/09/
Braig_JS_09_02.pdf

AD

