
Java Architectures for Mobilised Enterprise Systems

David Parsons

Massey University

d.p.parsons@massey.ac.nz

Abstract

The coming generation of mobile phones will enable

objects from enterprise systems to be distributed across a

range of devices of different scales. This object mobility

will provide for applications that can take advantage of

device-local data and processes to support rich client

interaction. However, such mobilised applications bring

with them new challenges for the software architect.
Distributed objects running on telephones or other small

mobile devices will have to work within a number of key

constraints, such as limitations on memory and available

APIs, and the need to maintain data integrity. This paper

focuses on the issues of distributed architectures where

objects are able to run on mobile devices but must be
universally synchronised. Specifically, it looks at how

aspects of current and developing Java APIs can support

architectures that synchronise mobilised objects.

1. Introduction

The coming generations of mobile phones (3

rd
 and 4

th

generation) will enable objects from enterprise systems to

be distributed across a range of devices of different scales.

Objects from a single application might migrate between

application servers, desktop terminals, portable

computers, PDAs and mobile phones. Each layer of such

a system will provide a different object environment,

where data storage technology, run time operating system

and available libraries may vary significantly. As objects

are distributed across multiple nodes, data integrity must

be maintained, even in contexts where connectivity to

central data stores is unreliable. Mobile objects will have

to be built in such a way that they can easily adjust to

their various environments and provide a transparent

interface for application developers. For this to be

successful, mobilised applications will have to be built to

cater for the capabilities of the most constrained devices

in the system, which for many applications will be mobile

telephones.

For the developer planning to build mobilised systems

that include application deployment on 3G telephones,

there are a number of available software platforms. Of

course each type of device will expose its original

equipment manufacturer (OEM) APIs which can be used

for development, but since these are proprietary on

different devices the same application may have to be re-

coded many times. In order to work at a higher level of

abstraction and develop software that can work across

different types of device, it will usually be more effective

to use either the .NET Compact Framework or the Java 2

Micro Edition (J2ME). This paper focuses on the Java

platform, which not only provides device interoperability

but also supports implementations across multiple

operating systems. In the telephone context, windows

based systems can only run on the Microsoft Smartphone,

which has limited handset support. In contrast, Java can

run on all Symbian [1] or Linux operating system devices.

There have been a number of Java based

implementations of systems that include mobility, for

example Ajents [2] and Klava [3]. However, these have

been proprietary modules around lower level Java

packages. In this paper we will instead look at how a

combination of standard Java technologies (i.e. those

ratified by the Java Community Process [4]) might be

used to address some of the core requirements of a

mobilised computing architecture that includes Java-

enabled phones. We begin by exploring some theoretical

aspects of mobile computing architectures before

reviewing some Java APIs relevant to mobile computing.

We then see how these Java APIs might be applied to an

implementation of a mobile architecture. We conclude

with some discussion about the possible future directions

that Java Specification Requests (JSRs) might take in

support of this type of architecture.

2. Mobile computing architectures

Mobile computing architectures need to be built with a

number of serious constraints in mind. They have to be

aware of the limitations of bandwidth, (dis)connectivity,

and cope with a disparate range of devices connected to

the mobile network. Data needs to be mobilised without

compromising integrity. Many of the devices attached to

the system will be relatively resource poor, and

potentially will be disconnected from the rest of the

system either voluntarily (to preserve resources) or in an

unpredictable manner (due to loss of wireless

connectivity). Any generic architecture must take account

of the capabilities of the most limited devices in the

system and compensate for their limitations as much as

possible.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

A number of systems have been developed to explore

architectures that can meet these various constraints and

requirements. Pitoura and Samarso [5] and Jing et al [6]

survey a range of these systems, in particular Bayou [7],

Odyssey [8] and Rover [9], and explore a number of their

features. The most common themes among the mobilised

architectures described can be summarised under the

general headings of proxy (agent) roles, knowledge

representation and transaction management.

Intelligent agents can act as proxies either on the

mobile client, the central server or both. These can

provide a number of services such as queuing messages

or asynchronous remote procedure calls to buffer partially

disconnected communications. Client side agents can also

be responsible for background pre-fetching into the

mobile object cache. In peer to peer systems, agents can

be responsible for providing services that require

lightweight server implementations on mobile devices.

The agent can intercept requests for services and start

(and stop) the appropriate service as required. It should be

made clear that in this context, although the agents are

working within a mobile system, they are not themselves

mobile, since mobility is an orthogonal property of

agents. Rather, they act as stationary agents, fulfilling the

mandatory properties of being reactive, autonomous, goal

driven and temporally continuous [10].

Knowledge representation is necessary to enable

agents to successfully limit the degree of data transfer

without causing excessive cache misses on the mobile

device. A degree of intelligence about the mobile objects

in the system is therefore required on the part of agents to

be able to make sensible decisions about what elements of

data should be moved between client and server at a

given time. This encompasses aspects such as

differencing (i.e. only updating the changed parts of

mobile objects) hoarding (preloading, perhaps by using

known queries or keys) and filtering (e.g. providing low

fidelity data from high fidelity sources, such as using a

monochrome image rather than a colour one). In some

cases, knowledge about the structure of the object being

transmitted can enable customised approaches, such as

the caching of directory data described by Cohen et al

[11]

The transfer and synchronisation of data in a mobile

architecture requires sophisticated transaction

management. Transactions in mobilised architectures are

by their nature distributed, but can also be long running

and can potentially overlap. Since pessimistic transactions

are likely to lead to unacceptable performance, some form

of optimistic locking is almost certainly a requirement.

However, regardless of optimizing policies (e.g. [12])

such locking strategies almost always result in conflicts

between concurrent transactions and subsequent

transaction rollbacks, or alternatively a system must

provide some form of conflict resolution mechanism as

an alternative to a ‘winner takes all’ scenario. In addition

to conflict resolution rules, systems can also take

advantage of push technology, for example databases can

broadcast hotspots where data is frequently updated, and

client side agents can use filters to tune to hotpots of

interest within a broadcast. Server side agents can

potentially work with database servers to target their

client agents in a point to point fashion by being aware of

the contents of their remote caches. Thus a combination

of point-to-point and publish-subscribe push mechanisms

can be used to attempt to keep client data in synch with

client side agent

server side agent

mobile device

database

server

Inter-agent

connection

(client-server)

Inter-agent

connection

(peer-to-peer)

Database

connection

Server agents

broadcast or target

database hotspots,

queue responses and

filter content

Client agents manage local

caches and services, and queue

client requests

Key:

Figure 1. Components of a mobile architecture

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

server data. Figure 1 summarises the key features of a

mobilised architecture that encapsulates many of these

approaches.

Many of the systems that have previously been built to

explore mobile architectures have been developed using a

variety of languages and tools. For example Rover

applications are developed using a combination of C, C++

and Tcl and Bayou is essentially based on extensions to

Unix. However, any system that hopes to provide

interoperable cross platform frameworks needs to be

developed using a language and associated tools that

support these requirements. The most appropriate current

technology to achieve this objective is the Java language,

given its ‘write once run anywhere’ philosophy [13].

3. The Java 2 Platform

Given the various requirements of a mobilised

architecture, which spans devices ranging from large

servers to small mobile devices, a Java implementation

will need to leverage many APIs from across the Java

platform. The Java 2 platform is divided into three

editions; Java 2 Standard edition (J2SE), Java 2

Enterprise Edition (J2EE) and Java 2 Micro Edition

(J2ME). The reason for this separation of editions is that

the range of possible Java operating contexts, and the

APIs to support them, is so wide that a single set of

standard APIs for all types of application and architecture

would be excessively large and would include much

redundancy. The number of optional packages that

spanned all types of system would also be very large. The

standard edition is itself divided into core Java (all the

fundamental APIs) and desktop Java (the rich client

APIs), while the enterprise edition is essentially a

superset of the standard edition core. All of the APIs of

the standard edition could conceivably be used in

enterprise development, and both can use a standard Java

Virtual Machine (JVM). The Micro edition, however,

comprises various subsets of the core with many

additional specialised APIs, and requires customised

JVMs.

3.1. The Java 2 Micro Edition (J2ME)

Many mobilised systems (e.g. [14]) are based

primarily on the centralized services of large scale

application servers using the J2EE APIs, with thin mobile

clients using HTTP / WAP connections. However, to

fully implement the types of system described in figure 1,

it is essential that the mobile devices host rich clients. In

this context, it is necessary to run J2ME on the mobile

devices to support features such as data persistence, data

synchronisation, push technology and messaging. In

contrast to the other two Java editions, the micro edition

has a special set of requirements because the range of

devices that it covers, from tiny embedded systems to

pocket computers, is too diverse to enable a single set of

APIs to suit all requirements. In addition, the standard

JVM is too big for most micro devices, so special JVMs

have to be provided for different devices. To cater for this

range of devices and requirements, the J2ME architecture

provides for a combination of configuration and profile

layers that enable particular implementations to be

targeted to a given size of device and a suitable API set.

In addition, a given device may expose native APIs that

can be leveraged by an application specific to that device

and, particularly of interest for this paper, optional Java

APIs (Figure 2).

In the J2ME architecture, the JVM will be customised

for the particular operating system and device, and will

support a configuration that defines the minimum set of

available JVM features and class libraries for a specific

category of devices (e.g. those with very small

memories). The profile layer defines the set of application

programming interfaces (APIs) available for a particular

family of devices (e.g. PDAs, telephones, embedded

processors etc.). The only requirement of the target

platform is that it must provide a minimal operating

system to run the JVM. The optional APIs provide for

specialised services to support application specific

requirements, such as web services, multi media or data

synchronization.

3.2. J2ME configurations and profiles

J2ME configurations specify the minimum

requirements for memory, Java language features, VM

support and runtime libraries and do not include any

optional components. There are two defined

Mobile Device

Native APIs

Host Operating

System

Optional Java

APIs

Java Virtual

Machine

Configuration

Libraries

Profile

Application

Figure 2. J2ME architecture

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

configurations, the Connected Device Configuration

(CDC) and the Connected Limited Device Configuration

(CLDC). These are published as standard specifications

as part of the Java Community Process (JCP). PDA style

mobile devices will typically support the CDC, whereas

for mobile telephones, CLDC is the relevant

configuration

The CLDC requires a very small virtual machine that

does not have to comply with the full JVM specification,

nor does it have to support the complete Java language

specification. API support is limited to a selection of

classes from the java.lang, java.lang.ref, java.io and

java.util packages, along with the Generic Connection

Framework (GCF) classes in the javax.io.microedition

package. These limitations can, of course, impact on how

mobile architectures can be implemented.

J2ME profiles are supported by a specific

configuration, and are used to provide functionality

specific to a family of devices, vertical market or

industry. Applications may have access to more than one

profile API at runtime so that they can be combined in

appropriate ways to provide an API set that is geared

towards a specific application requirement.

The key profiles for mobile phone development are the

Mobile Information Device Profile (MIDP) which

provides for interactive applications with graphical

interfaces and persistent data, and the Wireless

Messaging API (WMA) which supports short messaging.

The MIDP and WMA profiles are core components of the

Java Technology for the Wireless Industry (JTWI)

specification, which aims to provide a standard API set

for the mobile phone market. JTWI also includes a

conditional (optional) component, the Mobile Media API

(MMAPI). In addition, there are further optional J2ME

APIs that are either currently available or being

developed as part of the JCP. These include, among many

others, the Location API, J2ME Web Services and the

Data Synch API. These optional APIs can be installed on

mobile devices in whatever combination is required for a

given application, providing, of course, that the actual

implementations of the specifications can be provided

with a small enough footprint to work within the

constraints of a given device.

Many of the most challenging features of a mobilised

architecture relate to the distribution of persistent data

and its synchronisation. To address these issues, we need

to build an appropriate persistence layer that can be

applied across all nodes of a mobilised system and

integrate into it an appropriate synchronization

mechanism. In this paper we suggest that the Java 2

platform can provide us with the tools to address both of

these requirements, using Java Data Objects (JDO) and

Java Data Synch respectively, though further work needs

to be done on enabling these specifications across mobile

architectures and integrating them with J2ME systems. In

particular, JDO implementations will need to be tailored

for small devices to enable a mobile, distributed object

model.

4. Java persistence and JDO

Java provides a number of standardised options for

object persistence, but not all of these can be used in all

three editions of the Java 2 platform. For enterprise level

systems, a separate database management system is a

requirement, which can be mapped to an object model via

various Java APIs. J2SE supports object persistence

through serialization (to flat files or into database

columns) and JDBC (for mapping to relational

databases), while the enterprise edition adds entity

Enterprise Java Beans (EJB) as a persistence mechanism.

The problem for mobile systems is that some

configurations of J2ME do not automatically support any

of these persistence mechanisms, since the CLDC

includes only a very limited set of classes from the java.io

package (no file or object readers or writers). As an

alternative set of APIs, MIDP provides its own set of

APIs (the Record Management System), analogous to flat

file storage, in the javax.microedition.rms package. The

RMS comprises variable length record stores, each of

which is a collection of variable size binary data records.

Each record store has a unique name, and each record

within a store has a non-reusable integer index that acts as

a primary key. A record store is only accessible to the

MIDlet (MIDP application) that created it. Although

individual operations on a record store are atomic, there is

no transactional support apart from a version number that

can be used to support manually implemented locking

strategies. This mismatch between persistence APIs on

mobile clients and servers can be problematic if we are

trying to distribute a persistent object model across all

types of node in a mobile architecture. Fortunately, Java

provides another option for object persistence, the Java

Data Objects (JDO) specification. This is an optional

component of the standard edition that can also be used in

enterprise development via the Java 2 Connector

Architecture. Importantly, JDO can also be used in a

mobile environment, and in fact it is a recommended

persistence technology for mobile devices [15]. JDO can

be a very useful tool to encapsulate a distributed object

model, because we can use its APIs to render transparent

the different underlying data stores being used on

different nodes, and encapsulate services such as data

synchronization. At present, there are no implementations

of JDO for JTWI devices but there are several that will

work on PDAs. JDO implementations based on MIDP

RMS have been explored (e.g. [16]) and will be available

at some point, though due to the limitations of MIDP they

may be only API based and not include runtime metadata.

5. Java data synchronization

If wireless networks were free to use, had infinite

bandwidth, had very high quality of service and universal

coverage then mobile devices would be able to maintain

data integrity as easily as desktop clients of remote

databases. However, due to the limitations of the

infrastructure that exists now, and is likely to exist for a

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

long time into the future, there will be a need to

synchronize data between mobile clients and database

servers after a period of disconnected operation.

Synchronization is a key enabler for interactive

networked applications, since most enterprise

applications are data centric.

There are many propriety products that provide data

synchronisation, and there have also been some concerted

efforts to standardise these protocols, such as the OMA

(Open Mobile Alliance) data synchronization working

group and the SynchML initiative, which joined forces in

2002. SynchML was founded by Ericsson, IBM, Lotus,

Motorola, Nokia, Palm, Psion and Starfish to release an

open data synchronization protocol to ease data exchange

across networks, platforms and device types [17].

SynchML has been adopted by a wide range of vendors.

For example Pointbase, one of the main vendors of

mobile databases, is SynchML compliant. SynchML is

XML based, supports a range of data transport protocols

such as WSP (WAP Wireless Session Protocol), HTTP,

OBEX (Bluetooth, infra-red), and addresses the resource

limitations of mobile devices. This means that the

protocol is designed to fit within the memory footprint of

devices such as mobile phones. To support this ability,

data can be exchanged using a binary format (WBXML)

to reduce both the memory required and the load on

processor resources.

From the Java perspective, the key synchronization

component is Java Specification Request (JSR) 230, the

Java Data Synch API. This API is intended to enable

mobile applications to synchronize their local application

specific data with corresponding server side data,

replicating any changes made to the data on either client

or server. It is built primarily on existing industry support

for a universal standard for data synchronization, so it is

unsurprising to find that many members of the expert

group (including the mobile phone manufacturers

Motorola and Nokia) are also members of

OMA/SynchML. Like all Java APIs, the intention of the

Java Data Synch API is to provide a high level API

though a generic interface to the whatever data

synchronization implementations are actually being used

by the system devices. The specification provides Java

interfaces while vendors will provide implementation

classes to synchronize data via underlying protocols

(either native or Java based). SyncML Data

Synchronization is one of these underlying protocols, and

the specification will be based on this and other existing

mobile data synchronization frameworks.

The Data Synch API is planned as an optional package

within J2ME that could be used with either CLDC or

CDC. This means that it could be used with MIDP on

small mobile devices. The expert group was formed in

October 2003, and there are currently 16 members, with

the specification request being led by a representative of

Siemens AG. It is expected that the specification will be

adopted by the Java Community Process by early 2005.

With a Java Data Synch API in place, a mobile JDO

implementation could encapsulate data synchronisation

behind a mobile object model.

6. Integrating broadcast and point to point

messaging

To support the distribution and synchronization of data

across multiple devices, support for messaging triggers is

required to signal when data updates are due. Both

broadcast and point to point messaging can be

implemented using push technology, which provides the

ability to push information to a device without that

information being specifically requested, enabling live,

transparent updates to applications and data. A fairly

basic example of this is already provided with WAP push

technology. The more sophisticated push support in

MIDP enables us to send a message to a running

application, trigger an application update, provide user

alerts, send data, notify listeners or start an application

using the Application Management System (AMS). The

original MIDP specification (version 1.0) was lacking in

support for push services, providing only HTTP based

connectivity, which is a client-server request-response

mechanism. Using HTTP, it is not possible to push data

since the initial message must always be a request to the

server, i.e. it must be client initiated. Bonnet at al [18]

noted that this limitation precluded any peer to peer

communication in their Message Board Client system.

Similarly, Roth and Unger [19] report how the lack of

such facilities, along with limited server socket support in

an early version of the Java-integrated Waba platform, led

to excessive dependency on client initiated

communication in their QuickStep system.

To provide for a richer set of connectivity options and

overcome these types of issues, push support was

included in the MIDP version 2.0 specification. Push

connections in MIDP may be implemented using

Transmission Control Protocol (TCP) sockets or User

Datagram Protocol (UDP) datagrams [20]. Such

technologies allow servers to push data to clients, and

also enable peer to peer two-way Java based

communications. The various architectural components

are shown in Figure 3.

Due to some optional features of the specification, it is

difficult to guarantee which particular connection types

might be supported by a given mobile phone. An

alternative way of supporting push is to use the Java

Wireless Messaging API (WMA) component of JTWI,

which includes a Short Message Service (SMS) point to

point and Cell Broadcast SMS (CBS) publish subscribe

push option. Since SMS is now a standard feature of

mobile phones, this type of connection is virtually

guaranteed to be available on a 3G phone.

Regardless of the underlying communication

mechanism being used, the MIDlet handles pushed

connections using the push registry. Figure 4 shows the

main features of the MIDP push registry, comprising a

simple API and two types of push events; inbound

connections and timer alarms. Timer alarms enable an

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

application to be started or updated on a timed basis. This

does not require any external connection, so the source of

the push event comes from the device itself. In contrast,

inbound connections enable an application to be started or

updated from an external source, which may be a peer

(i.e. another mobile device) or a server side application.

Since the wireless messaging API is slated to be available

as part of J2SE via the Generic Connection Framework

optional package [21], and the Server API for Mobile

Services is also likely to be available soon, desktop or

server based systems can be developed to provide the

control framework for push-enabled application services.

In our mobilised architecture, timer alarms could be

used to monitor the mobile cache for hoarding, while

inbound connections could be used to trigger updates

broadcast from servers or sent point to point by server

side agents.

7. Applying a Java services stack to a mobile

architecture

In this paper we have reviewed both the components

of a mobilised architecture and a number of Java APIs. In

this section we will draw the two together to see where

Java can be applied to a mobile architecture.

From Figure 1, we can see that the key components of

our architecture are the agents, with the database

components being a core feature. Assuming that the

mobile devices in the system are Java enabled, the client

side agents can make use of the MIDP APIs, in particular

the push registry, to meet their requirements. The push

registry can be used to trigger agent activity in managing

the mobile cache. The agents will need to be integrated

with the persistence layer to make this work effectively,

so it is likely that the JDO persistence layer will

encapsulate some agent activity. The persistence agents

will be able to utilise the Java Data Synch APIs to

manage the cache. The push registry can also be used to

trigger request for mobile server connections by peer

devices. Once a need has been identified for data

download the agents can use HTTP connections to use

services from J2EE APIs such as servlets, JSPs or web

services

On the server side, agents can again use the JDO and

Java Data Synch APIs to manage distributed data. In

addition, server side push can be implemented using the

Wireless Messaging APIs, as specified for the standard

edition of Java, and of course the general features of the

Java 2 Enterprise Edition. For example, server side agents

could be plugged into the servlet filter layer of an

enterprise system to pre-process HTTP client-server

interaction. The Java services stack is outlined in Figure

5.

Inbound
connections

Push Registry

Timer alarms

MIDlets that
consume
inbound
connections

MIDlets that
consume timer
alarms

PushRegistry API

getFilter
getMidlet
listConnections
registerAlarm
registerConnection
unregisterConnection

Figure 4. The MIDP push registry

Web
Services

Client to server
(http / https)

Push (SMS / CBS /
Sockets / Datagrams)

Server
Side

applications

Peer to peer
(SMS / CBS /
Sockets /
Datagrams)

Figure 3. Components of a mobile application
architecture

Web
applications

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

8. Java Specification requests and future

mobile architectures.

In this paper we have identified a small number of core

Java specifications that are required to build a mobilised

software architecture using standard Java APIs. Some of

these (e.g. Java Technology for the Wireless Industry and

J2EE) already provide viable standards and

implementations for such architectures. In contrast,

although it is fully specified, Java Data Objects does not

yet provide us with an implementation that can run on the

smallest mobile devices (i.e., those that use the MIDP

APIs), but we may expect these to be developed. Some

other relevant specifications are still at the request stage

within the JCP and have not yet been published. Most

importantly for this discussion, the Java Data Synch API

is currently in this state. Of the nearly 300 specifications

requests listed by the JCP [22], many are in a state of

flux, and not all will necessarily be accepted, or may be

withdrawn. However, JSR such as JSR 87 (Java Agent

Services) and JSRs 232 and 233 (Mobile Operational

Management and J2EE Mobile Device Management and

Monitoring Specification) may be of real value in the

future.

9. Related work

The architectural framework described here is based on

pooled features from a number of systems surveyed by

[5] and [6], and the combined features of a number of

current and proposed Java APIs. However there are some

alternative architectures, variations and related

technologies that might be considered. Burge et al [23]

propose a system based on pervasive store-and-forward

data stores that gather data from roaming devices via Jini

[24]. Unlike the architecture described here,

responsibility for ensuring that data is reconciled with the

central database lies with the mobile storage rather than

the mobile device. Wolfe [25] also indicates that potential

ubiquity of Jini enabled devices could support such

architectures, despite the initial slow take up of the

technology.

Lunney and McCaughey’s [26] discussion of remote

persistence implementations with Java focuses on socket

level and RMI connections, describing an applet/RMI

client architecture where persistence is confined to the

server. However, their architecture could be extended to

include client side object caches. RMI based systems in

particular do have the advantage of serializing objects

between client and server, whereas the Java Synch model

described here will probably use an intermediate data

format (if it follows the lead of SyncML.) Also, although

their discussion is limited to applets as the RMI client,

J2ME can support a specialised RMI layer [27], though

the current specification is unavailable on the smaller

mobile devices that use CLDC.

The Java APIs for Integrated Networks (JAIN) are

another feature of Java in the telecommunications field

that could be considered in a mobilised enterprise system,

though they do not impact specifically on the generic

architecture described in this paper. For example, Tsuei

and Sung [28] describe a ‘JAIN-like platform’ for

ubiquitous information services, including WAP based

mobile Java systems. However, they do not address the

JAIN APIs directly. The intention of JAIN is to provide

standard Java APIs for converged IP and PSTN networks,

though there have been some problems finding support

for some aspects of the service provider APIs, and seven

specification requests in this area have been withdrawn

[29].

One of the more common features of experimental

mobilised systems is the use of mobile, rather than static,

agents. In this paper we describe a system of client and

server side agents that manage the transfer of data, but

they themselves remain on their host devices. In contrast,

many systems have been described where the ability of

agents to migrate between, and execute on, multiple

devices is exploited. Java is the language of choice for

many agent based system, since the mobile agents take

advantage of dynamic loading to transfer programs, data

and metadata between devices [30]. Agent based systems

can enable complex interactions between agents and

resources so that disparate programs and data can be

marshalled to achieve a specific task An example of this

type of systems is StratOSphere [31], though it should be

noted that this is not necessarily targeted at small mobile

devices, rather, the focus is the mobility of code.

However, there may be some benefit to the integration of

mobile agents into the architecture described here. The

main limitation in terms of building a standardised

framework from Java components might be the slow

progress of standardisation. Whereas a static agent can

easily be encapsulated behind another local API, such as

Java Data

Synch

JDO

WMA
MIDP push

registry

Mobile

J2ME

application

http

Java Data

Synch

JDO

Wireless

Messaging

Server

J2EE

application

Figure 5. Java services stack for mobile
applications

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

a Java Data Objects implementation, a mobile agent

system would require exposing more proprietary APIs.

Mobile agents rely on the dynamic loading capabilities

of their host virtual machines, and a similar technique of

dynamic loading is used in the MOCA system, though

rather than being based on autonomous agents, the focus

here is on a service oriented architecture [32]. The

technique used is similar in principle to a combination of

Jini style features and Java embedded server. Again,

aspects of a service oriented architecture might

complement the approach described in this paper, and

could be regarded as being orthogonal to it rather than

providing a completely different approach.

10. Conclusion

In this paper we have described a generic architecture for

mobilised systems drawn from a number of previous

examples, and explored the relationship between the

various components of this architecture and a number of

Java specifications, either current or in progress. In

particular we have focused on those APIs that enable the

effective management of distributed data and two way

communications between clients, servers and peers in

systems that include the smallest of mobile devices. Once

a critical mass of the relevant specifications has been

fully published and implemented, we will have the

opportunity to move from experimental and proprietary

architectures for mobilised enterprise systems to

standardised, platform independent, interoperable

frameworks. This should foster more reuse and reliability

and enable the building of more efficient and powerful

mobilised systems. Most of the components of the

necessary J2ME architecture are in place. Critical work,

however, has to be done in the areas of integrating JTWI

compatible JDO implementations with the Data Synch

API if such frameworks are to transparently manage the

mobilisation of data.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

References

[1] Jode, M.D., Symbian on Java, Symbian, 2004, http://www.symbian.com/technology/SymbianOnJava2_05.pdf, last accessed

June 17th, 2004

[2] Izatt, M., P. Chan, and T. Brecht, "Ajents: towards an environment for parallel, distributed and mobile Java applications",

Software: Practice and Experience, 2000. 12(8): p.667-685.

[3] Bettini, L., R.D. Nicola, and R. Pugliese, "KLAVA: a Java package for distributed and mobile applications", Software:

Practice and Experience, 2002. 32(14): p.1365–1394.

[4] SunMicrosystems, Introducing the Java Community ProcessSM (JCPSM) Program Version 2.6, Java Community Process,

2004, http://jcp.org/files/whitepaper.JCP26Whitepaper.pdf, last accessed June 24th, 2004

[5] Pitoura, E. and G. Samaras, Data management for mobile computing. 1998, Boston: Kluwer.

[6] Jing, J., A. Helal, and A. Elmagarmid, "Client-Server Computing in Mobile Environments", ACM Computing Surveys, 1999.

31(2): p.117-157.

[7] Demers, A., K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. "The Bayou Architecture: support for data

sharing among mobile users". in Workshop on Mobile Computing Systems and Applications. 1994: IEEE. p.2-7

[8] Satyanarayanan, M., B. Noble, P. Kumar, and M. Price. "Application-aware adaptation for mobile computing". in ACM

SIGOPS European Workshop. 1994. Wadern, Germany: ACM Press. p.104

[9] Joseph, A., J. Tauber, and F. Kaashoek, "Mobile computing with the Rover toolkit", IEEE Transactions on Computers, 1997.

46(3): p.337-352.

[10] Lange, D. "Mobile Objects and Mobile Agents: The Future of Distributed Computing?" in ECOOP 98 - Object Oriented

Programming. 1998. Brussels, Belgium: Springer-Verlag. p.1-12

[11] Cohen, D., M. Herscovici, Y. Petruschka, Y. Maarek, A. Soffer, and D. Newbold. "Personalized Pocket Directories for

Mobile Devices". in Proceedings of the eleventh international conference on World Wide Web. 2002. Hawaii, USA: ACM

Press. p.627-638

[12] Perich, F., A. Joshi, Y. Yesha, and T. Finin. "Neighborhood-consistent transaction management for pervasive computing

environments". in Database and Expert Systems Applications. 2003: Springer-Verlag. p.276-286

[13] Gosling, J., B. Joy, and G. Steele, The Java Language Specification. The Java Series. 1996, Reading, Mass.: Addison-

Wesley.

[14] Zeadally, S. and J. Pan, "J2EE support for wireless services", Journal of Systems and Software, 2004.

[15] Reese, G., JavaTM Database Best Practices. First ed. 2003, Cambridge: O'Reilly.

[16] Braig, A. and S. Gemkow, The BonSai Principle - Persistenz in der Java 2 Micro Edition, in Java Spektrum. 2002.

[17] Heintzman, D., SyncML, SyncML Initiative, 2002,

http://www.openmobilealliance.org/tech/affiliates/syncml/introducing_syncml_29jan02_douglas_heintzman.pdf, last

accessed June 17th, 2004

[18] Bennett, J., M. Armstrong, and S. Gupta. "A Message Board Client for handheld devices". in 42nd ACM annual Southeast

regional conference. 2004. Huntsville, Alabama: ACM Press. p.17-18

[19] Roth, J. and C. Unger, "Using Handheld Devices in Synchronous Collaborative Scenarios", Personal and Ubiquitous

Computing, 2001. 5(4): p.243-252.

[20] Ortez, E., The MIDP 2.0 Push Registry, Sun Microsystems, 2003,

http://developers.sun.com/techtopics/mobility/midp/articles/pushreg/, last accessed June 23rd, 2004

[21] Ortez, E., The Wireless Messaging API, Sun Microsystems, 2002,

http://developers.sun.com/techtopics/mobility/midp/articles/wma/, last accessed June 23rd, 2002

[22] JCP, List of all JSRs, Java Community Process, 2004, http://www.jcp.org/en/jsr/all, last accessed June 25th, 2004

[23] Burge, L., S. Baajun, and M. Garuba. "A Ubiquitous Stable Storage for Mobile Computing Devices". in 2001 ACM

symposium on Applied computing. 2001. Las Vegas, Nevada, United States. p.401 - 404

[24] SunMicrosystems, Jini™ Architecture Specification, Sun Microsystems, 2001,

http://wwws.sun.com/software/jini/specs/jini1_2.pdf, last accessed September 13th, 2004

[25] Wolfe, A., Java is Jumpin', This Time for Real, in ACM Queue. 2004. p.16-19.

[26] Lunney, T. and A. McCaughey. "Object persistence in Java". in Proceedings of the 2nd international conference on

Principles and practice of programming in Java. 2003. Kilkenny, Ireland. p.115-120

[27] Hodapp, M., JSR 66: J2ME RMI Optional Package Specification Version 1.0, Sun Microsystems, 2002,

http://www.jcp.org/en/jsr/detail?id=66, last accessed September 13th, 2004

[28] Tsuei, T. and C. Sung, "Ubiquitous information services with JAIN platform", Mobile Networks and Applications, 2003. 8(6).

[29] Sun, JAIN General Q&A, Sun Microsystems, 2004, http://java.sun.com/products/jain/qa.html, last accessed 2004

[30] Wong, D., N. Paciorek, and D. Moore, "Java-based Mobile Agents", Communications of the ACM, 1999. 42(3): p.92-102.

[31] Wu, D., D. Agrawal, and A.E. Abbadi. "StratOSphere: Mobile Processing of Distributed Objects in Java". in 4th annual

ACM/IEEE international conference on Mobile computing and networking. 1998. Dallas, Texas, United States: ACM Press.

p.121-132

[32] Beck, J., A. Gefflaut, and N. Islam. "MOCA: A Service Framework for Mobile Computing Devices". in 1st ACM

international workshop on Data engineering for wireless and mobile access. 1999. Seattle, Washington, United States: ACM

Press. p.62-68

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

9

