

Hybrid Agile Development and Software Quality

David Parsons1, Ramesh Lal2

1Institute of Information and Mathematical Sciences, Massey University,
Auckland, New Zealand

d.p.parsons@massey.ac.nz

2Institute of Information and Mathematical Sciences, Massey University,
Auckland, New Zealand

r.lal@massey.ac.nz

Abstract

Agile methods have been increasingly adopted as a way to increase the speed and
flexibility of software development whilst maintaining or improving quality.
However, organisations with a heavy investment in, and emphasis on, more
traditional software engineering approaches may regard the wholesale adoption of
agile methods as being potentially risky. As a result, a number of experiments in
hybrid approaches have been made, suggesting that a combination of agile methods
and traditional software engineering can be a route to quality software
development. Further, that component based software engineering has an important
role to play. In this paper we review the key issues in this debate and propose that
test related practises are the most significant enabler in providing quality assurance
in hybrid systems.

1.0 Introduction

Despite the mission criticality of software for most businesses, and decades of
experience and technological advancement, significant numbers of software
development projects continue to fail, costing substantial amounts of money [1] [2]
[3]. These software project failures happen with companies regardless of their size.
Table 1 provides a historical perspective on project success and failure from 1980
to 2000. Projects identified as ‘challenged’ are those projects that were completed
but were over their budget and time estimates, with fewer features and functions
than required. Thus we can see that even though these projects did not fail outright,
they were not of sufficient quality.

 Year Succeeded Failed Challenged
1980 5% 48% 47%
1994 16% 31% 53%
1996 27% 40% 33%
1998 26% 28% 46%
2000 28% 23% 49%

Sources: [4],[5]

Table 1: A historical perspective on project success and failure (1980-2000)

The statistics do suggest that there has been some improvement in success rates,
and a significant decrease in the proportion of failed projects. However the
percentage of completed projects that are of insufficient quality seems to have
remained fairly constant.

Some writers assert that formal software development methodologies have a
positive impact on project success [6],[7],[8]. The Standish Group 2001 report [5]
states that the use of a formal methodology should increase the chance of project
success by 16%. We need to be aware however that use of a methodology is not
the only factor, and the available literature provides many perspectives on project
failures that occur despite the significant progress made in development
methodologies and tools [9],[10],[11]. These perspectives can be grouped into
socio-organizational, technical, and economic factors [12].

Even where we might isolate the effect of methodologies from other factors, we
have to be aware of the number and diversity of methods that might be applied, It
has been estimated by Jayaratna [13] that there are over 1,000 software
development methodologies world-wide, and these cover a range of approaches,
including ad-hoc, prescriptive, agile and hybrid [14],[15]. Table 2 summarises
some of the key methodologies and their evolution since the 1960s.

Whether despite, or because of, the plethora of methods developed in the 1980s
and 1990s, several key problems have remained with software development,
including how to develop systems quickly while accommodating requests for
changes late in development process and how to maintain quality while controlling
costs [16]. In response to these problems, a new set of informal analysis and design
approaches emerged, initially known as lightweight methods but later renamed
agile methods by their promoters due to the potentially derogatory use of the term
‘lightweight’ [17]. It appears that agile methods are becoming increasingly popular
and many organisations are adopting this new way of developing software. A
number of reasons have been suggested as to why these new methods are more
appropriate for software development in a dynamic business environment such as
the ability to; (a) move quickly and react to change, (b) accept and welcome
change, (c) deviate from a plan and treat it as new information, (d) optimize
communication among various stakeholders, and (e) learn from each agile project

[18]. However there seems to be more adoption on an ad-hoc basis than for
strategic reasons, with adoption based on subjective accounts of how methods were
used to design and develop software in a given organization [19].

Period Era Methodology types
1960s
and
early
1970s

Pre-
Methodology
Era

Ad-hoc approach

Late
1970s -
early
1980s

Early
Methodology
Era -
prescriptive
methodology

SDLC- waterfall model

Mid
1980s -
late
1990s

Methodology
Era –
proliferation,
software
engineering,
prescriptive
methodologies

Structured- STRADIS, Yourdon Systems Method,
SSADM, Jackson Systems Development; Data-
oriented- IE, Prototyping-RAD, Unified Process,
Object-Oriented Analysis, Participative-ETHICS,
Strategic-ISP, Systems-ISAC,SSM, MULTIVIEW,
Formal methods, Vienna Development Method

Late
1990s
onwards

Post
Methodology
Era

Ad-hoc, Agile methods; Scrum, Dynamic Systems
Development Method, Crystal Methods, Feature-
Driven Development, Lean Development, Extreme
Programming, Adaptive Software Development,
Agile modelling, Internet-speed development

Sources: [8],[14],[20],[13]

Table 2: Some key methodologies used for information systems development since the
1960s

There are claims that the use of agile development methods enables software to be
created without the overheads of prescriptive methods but it appears that no major
academic research has been undertaken to verify these claims and practices, or to
provide a better understanding of the mechanics of agile methods. Therefore there
is a potential risk in organisations migrating to agile methods without an
understanding of how quality assurance can be maintained in a less formal
approach. In this paper we look at quality assurance in the adoption of agile
methods by organisations with a traditional software engineering ethos. We begin,
in the following section, by describing the key features of agile methods. We then
move on to look at how these methods might be adopted by organisations that wish
to retain significant aspects of their current software engineering infrastructure and
review some reported practice. We then consider the role of component based
software engineering practice in ensuring software quality and consider how this
can be integrated with an agile approach. Finally we address the main contribution
of this paper, where we propose that test related practises are the most significant

enabler in providing quality assurance in hybrid systems. We conclude with some
suggestions for further work.

2.0 Agile Methods

In February 2001 a group of seventeen software experts got together in Snowbird
ski resort in the Wasatch Mountains of Utah, to discuss the growing field of what
used to be called lightweight methods [17]. They decided to use the term agile to
describe these new methods and the agile software development manifesto was
written, describing the values and principles of the agile movement [21]. Agile
software development is seen as an alternative to software engineering driven
development. Software engineering is often seen as a rigorous process that requires
substantial planning, modelling, and creation of various artefacts. Table 3 lists
methods that are part of the agile family, which are based on the belief that a better
way of developing software is by actually creating the software itself rather than
spending a considerable amount of time determining what is to be developed,
planning the various activities of the software development, designing, and
modelling the features of the software before embarking on any software
construction work.

Method name Year
Lean Development (LD) 1980s
Dynamic Systems Development Method (DSDM) 1995
Scrum 1995
Crystal Methods 1998
Extreme Programming (XP) 1999
Internet-speed development (ISD) 1999
Adaptive Software Development (ASD) 2000
Feature-Driven Development (FDD) 2002
Agile modelling (AM) 2002

Sources: [17], [19]
Table 3: Methods that are part of the agile family

The Manifesto for Agile Software Development states the following: “we are
uncovering better ways of developing software by doing it and helping others to do
it. Through this work we have come to value:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left
more” ([17] p. xvii). These new methods attempt to provide balance between the
items on right and the items on the left, rather than replacing the items on the right.
According to Martin [22] it is a useful compromise between no process and too
much process, providing just enough process to gain a reasonable payoff.

Agile software development is based on customer satisfaction, early incremental
delivery of software, small and highly motivated teams, informal methods, and
minimal software processes [23]. Before the emergence of agile methods, there
was a belief in the software industry that successful software development would
succeed only through careful project planning, formalization, quality assurance, the
use of analysis and design methods supported by CASE tools, and controlled and
rigorous software development processes [6]. However, this plan-based software
development tied the developers down in following the processes, where a
considerable amount of time is spent in planning, eliciting systems requirements,
designing and modelling the requirements, and writing extensive documentation
rather than creating the actual system. Another major concern was that the systems
requirements tended to change even before any new system could be fully
implemented. In addition, ‘high ceremony’ methods like this are more suited for
large scale industrial and scientific software development and when applied to
software development for small and medium-sized business, the cost is
overwhelming [6].

The ‘minimal’ process that is used with an agile software development method is
based on the belief that during systems development it cannot be determined in
advance which requirements will remain static and which ones will change due to
changing business conditions. The requirements are prioritized, and the agile
process recognizes the fact that the requirements and requirement priorities may
well change during the development period. With agile methods, any function or
feature of the software is developed immediately after minimal design to test it out,
hence becoming a test-driven methodology. The agile process is based on the idea
that analysis, design, development, and testing activities cannot be predicted and
planned in advance [21].

3.0 Prescriptive Methods- Quality Focus

According to Pressman [23], prescriptive methodologies can be classified broadly
into four types; (a) the waterfall model, (b) incremental model-RAD (c)
evolutionary development – prototyping, spiral model, concurrent development
model and (d) specialized process models - component based software engineering.
These software engineering models are process driven, where software process is
seen as providing the necessary framework that enforces to perform the required
tasks whereby a high quality software product is built. Process includes the
approach to be taken for analysis, design and development of software.

Software engineering identifies the process layer (Figure1) as critical in enabling
tools and methods to be used to develop quality software. According to Pressman,
the process layer defines the framework activities - communication, planning,
modelling, construction, and deployment, which must be established for effective
delivery of the software. For software development projects, it provides for the
following: (a) control activities, (b) work products, (c) milestones, (d) quality
standards, and (e) change management for requirements.

Figure 1: Software Engineering as a layered approach (from Pressman [23])

The software engineering perspective on quality is that accurate definition of
requirements provides the necessary groundwork for ensuring quality of the
software together with using quality metrics and employing rigorous testing.
Software quality is also impacted by a combination of factors. According to
Pressman these factors can be categorized into two types; those that can be
measured directly (defects) and those that can only be measured indirectly
(usability and maintainability).

In ensuring quality through this approach, a considerable amount of time is spent
determining requirements before any software is written. A feasibility study,
requirement elicitation and analysis, requirement validation, requirement reviews,
and requirements management occur first. Various artefacts such as activity
diagrams, class diagrams, and use cases are created to model systems requirements.
System models; context models, behavioural methods, data models, and object
models are developed based on requirements showing operational, functional, and
behavioural characteristics of the system [6]. Before any coding begins, an
architectural design is created showing the structure of data and program
components and component level design is created to determine if software will
work as planned [23]. This shows that with software engineering a considerable
amount of design and modelling work happens, which may take months, before
any attempt is made to create the software [6]. Software engineering views these
detailed levels of activities, designs and models as critical for achieving quality
whereas agilists believe creating this level of detailed artefacts in advance is
unnecessary and time consuming [18],[22].

3.1 Comparing Agile and Prescriptive Methods

There is substantial literature available regarding agile methods, documenting
conditions where these methods are more suited for software development than
prescriptive methods. Agile methods claim to offer an improvement in quality of
software, requirements management, customer satisfaction, and team satisfaction

Tools

 Methods

 Process

Automated or semi-
automated support
for process and
methods

Tasks:
communication,
requirement analysis,
design, modeling,
program
construction, and
support

 A quality focus

[24] [25]. They suit software projects with uncertain requirements [21], which
suggests that the agile practice of iteration as essential for software to be created.
The rapid and iterative aspect of agile methods also enables frequent release of
working products for customers to see throughout the entire development process
[26],[27].

Agile methods emphasize that any process used should be effective and efficient
and needs to change as an organization’s needs change. Agile methods are based
on the idea of ‘barely sufficient process’ [28],[29],[30], which agilists believe
enables successful software development. Researchers also point out that moving
away from extensive process based design enables development teams to meet
customer demand quickly [31],[32]. Agile methods adopt the practice of
simplicity, i.e. avoid any unnecessary work or tasks that do not add value to the
project [18]. Communication and feedback enable developers to optimize various
stakeholder involvements in agile projects [33]. Agile methods advocate a
significant amount of interaction between the development team and the customer
to create a positive working relationship. Hence, collaboration with customers is
also regarded as one of the important agile software development practices
[34],[24]. This practice emphasizes that all stakeholders must work together as a
team throughout the development process.

To adopt agile methodologies, the software development team will need to be
equipped with people-skills or soft-skills. According to Highsmith [17], agile
methodologies place far more value on the interaction of talented individuals over
the process and tools that are the key themes of prescriptive methodologies. Agile
methods require team members to have appropriate communication skills for
collaboration to happen in a team situation with customers and also have a friendly
approach and talent to relate well with others [35]. Pressman [23] lists the
following ‘must have’ traits of agile team members; (a) competence, (b) common
focus, (c) collaboration, (d) decision-making ability, (e) fuzzy problem-solving
ability, and (f) mutual trust and respect. It is a significant move away from
technical skills as being the only important skills for any team member using a
prescriptive methodology.

The pros and cons of agile methodologies are hotly debated and some critics of
agile methodologies argue that agile concepts are simply the adoption of good
practices from different prescriptive methodologies [36]. However Beck argues
that this is a positive aspect, that agile methods are unique in identifying and
unifying these practices [37]. However other pitfalls have been identified, such as;
effective customer involvement is not possible, individuals have different
personalities which can often be a barrier for forming an effective team,
prioritizing requirements is difficult for large systems with many stakeholders, and
simplicity requires extra work, which is difficult to carry out when working under
pressure to meet deadlines [6].

4.0 Agile Practices and Quality Assurance

In this section we explore the relationship between agile practices and Quality
Assurance (QA). There are a number of agile practices that to varying degrees
impact on quality but it is in design and implementation that we see the most
striking examples of a quality focus. Quality in design is achieved by a continuous
process of refactoring that works against the traditional notion of software entropy.
Whereas in the past, constant changes to software might cause it to ‘decay’,
constant refactorings during development and maintenance actually enable the
design to improve [38].

Unlike some earlier approaches to developing software quickly and flexibly such
as Rapid Application Development, agile approaches emphasize quality of design
as the essential prerequisite to maintaining agility [39]. Fundamental to the ability
to refactor is the role of testing in an agile development process. Indeed an
emphasis on testing might be regarded as the most important feature of the agile
approach, perhaps most clearly in Extreme Programming [37]. Testing in an agile
process covers a number of important practices, including unit testing, a test-first
approach to coding, tests written by users and continuous integration (which
assumes a regression testing cycle). The central role of testing in the support of
design quality through refactoring means that quality is built into the process of
development rather then being merely a supporting concept. Research suggests that
such an approach not only improves the quality of code but may be the most
important quality related practice of agile methods, since test driven development
is essentially focused on quality of service. [40]

If agile practices, particularly those that relate to testing, are intrinsically quality
assured, this changes the role of QA in organisations that undertake agile
development. For QA professionals to be relevant within this type of environment
their working practices need to integrate with agile development. This means
working closely with other team members, understanding that agile development is
an evolutionary process and developing a range of skills that is wider than those of
‘traditional’ QA [41]. Such integration of QA into the agile development lifecycle
is not only possible but fully compatible with widely used quality focused
processes such as Software Quality Assurance (SQA) and Verification and
Validation (V&V) [42].

Some agile practices integrate both development and QA activities, meaning that
some QA work will be done by developers. Examples of such practices include
integrated code inspection through pair programming, refactoring, collective code
ownership and coding standards. In fact the main difference between the QA role
in traditional and agile methods tends to be in the balance between static and
dynamic techniques. In traditional ‘high ceremony’ methods, QA is focused on the
review of static materials such as design documents and ‘completed’ code. Agile
practices such as continuous integration are more dynamic QA techniques.

In summary, we might conclude that QA practices may occur earlier and more
often in an agile rather than in a more traditional approach, but that they are
equally, if not more, relevant.

5.0 Hybrid approaches to Agile Software Engineering

If we are convinced by the previous arguments that moving to an agile approach
does not necessarily compromise quality, we might usefully investigate why
certain types of organisation and development team may nevertheless not be
prepared to adopt a fully agile approach. Perhaps the key issue is the philosophy of
agile methods, whereby we replace the traditional all encompassing methodology
with a more flexible and less prescriptive approach. It may be that while there is an
acceptance that agile methods can be useful in certain types of organisation or
software project, that they are not sufficient for every case. We can see, for
example, that agile methods provide a generative rule set which is a minimum set
of things that apply to all projects, whilst being aware that organizations
themselves are complex and adaptive systems, where individuals are self
organising and results may be innovative and emergent [43]. As a consequence of
this, some organisations may perceive agile methods to be inadequate in both detail
and coverage to provide a fully viable methodology. In an industry where
significant investment has been made in engineering approaches such as ISO 9000,
the Capability Maturity Model (CMM), and a number of industry-led initiatives
such as the Unified Modeling Language and the Unified Process, there is sure to be
a reluctance to accept wholesale change.

One problem that has reinforced this perception is that there are many different
methodologies purporting to be ‘agile’, so that there seems to be an emphasis on
the quantity of different methods rather than the quality of the methodology.
Different methods tend to focus on different aspects of the software development
lifecycle, meaning that a single method may not provide sufficient support for all
aspect of the lifecycle. Further, many methods seem to include a large number of
abstract principles rather than concrete guidance. Indeed, one analysis showed that
five out of nine agile software development methods that were analysed
emphasised abstract principles rather than concrete guidance [19]. This issue is
complicated further where abstract principles are not clearly understood. The
concept of metaphor, for example, has proved both confusing in principle and of
little utility in practice [44]. Faced with methods that in some cases could be
regarded as replacing rigor with smoke and mirrors, organisations might feel
justified in fearing that replacing traditional prescriptive methods with much less
formal ones might compromise quality. Because of this, we have seen a number of
examples of agile practices being used in a complementary manner with more
formal processes.

5.1 Hybrid Approaches in Practice

Manhart and Schneider [45] report on an organisation where the agile principles of
unit testing and test-first development were integrated into an existing formalised
process. The organisation did not feel that agile methods could be adopted
indiscriminately, but rather that certain principles could be adapted to deal with
specific issues related to developing embedded systems. Although the change to a
test-first approach was somewhat radical from the programmer perspective,

changing from an implement-document-test mindset to a test-implement-document
mindset, it was felt to be beneficial in terms of software quality.

Such hybrid approaches underline that fact that the broad goals of engineering and
agile development are already the same: to develop the required software at an
appropriate cost and meet the customer’s quality requirements. Thus there is no
conflict of interest between agile and more formal approaches, rather a change of
emphasis. For example, quality certification assumes that process quality will
equate to product quality, but the agile perspective puts more emphasis on product
quality, though reflective practice rather than a restrictive process. Traditional
quality processes are also not entirely incompatible with an agile approach. For
example, Capability Maturity Model Integration (CMMI) has many process areas
and practices that are compatible with agile practices [46]. Lycett et al [47] suggest
a framework based on activities, artefacts and patterns that embraces agile
practices while still providing an audit trail. Some agile methods also stress certain
artefacts and activities as a minimum level of ceremony, such as ICONIX [48]

A further hybrid approach is described by Armitage [49], which overlays an agile
process with higher level design approaches. The intent here is to avoid the
potential fragmentation of the overall design by developing low fidelity redesigns
of existing builds to assist in refactoring. In addition, a further ‘project vision’ level
of design is suggested. This hybrid approaches attempts to balance the empirical
approach of high fidelity low level components with low fidelity, high level
components, to provide the overall vision of the product. Again, design quality is
seen as the key driver.

In all of the approaches that attempt to balance agile practices with more traditional
engineering approaches, there is an attempt to get the benefits of both discipline
and agility. The benefits can be that none of the existing value of the current
methodology is lost, but that new value may be added. This may include the
development of individual skills, such as the ability to plan through the revising of
decisions in iterations and refactorings [50]

6.0 Components and the Economics of Quality

In our previous discussion we have reviewed a range of research material that
suggests that it is possible to integrate agile practices within a more formal
engineering focused software development process to enhance quality. However
there is a further argument regarding software quality and agile development that
we need to address, which is that agile development alone does not lead to total
quality because of its minimalist approach. The economics of agile development
assume that once a piece of software meets its requirements within the current
development that it is good enough. Further enhancement of the software is
therefore economically unjustifiable, in other words, total quality is economically
bad. In contrast, in the development of software components that are designed for
reuse, perfectionism is economically good, thus the concept of ‘trusted
components’ [51]. For this argument we might infer that to enhance software

quality as much as possible we should adopt features from both agile development
and Component Based Software Development (CBSD). At first glance it may
appear that the low ceremony agile approach and the high ceremony component
engineering approaches are incompatible. However it is also true that agile
development is very appropriate for the development of discrete high fidelity
software parts, which is one way of defining a component. Again, therefore, we
can see the potential for a hybrid approach that integrates features of component
development and agile practice [52].

For such an approach to be successful, there needs to be an acknowledgment that
certain parts of our software development process will be more high ceremony than
others, that we may use a more structured and formal process to develop
components that we do the develop the systems that reuse them. [53]. By
combining these approaches we can develop product line frameworks that provide
multiple applications from a common framework and components

7.0 Test Related Practices as the Key to Quality
Assurance

In all of the hybrid approaches we have discussed in this papers. The most
important features that bridge the different development philosophies are quality
assurance practices embedded in testing related activities. Thus in any hybrid
development approach the constant factor should be a comprehensive testing
framework and set of practices. In turn, a robust testing strategy enables safe
refactoring to ensure design quality. Pair programming in both component and
product areas ensures a further quality assurance role for developers. Figure 2,
adapted from Wills [53], shows how these test related quality assurance strategies
can be applied in an integrated component based and agile development
environment. Here, a higher ceremony approach is used to build components,
including rigorous testing and a search for perfection, justified by the economics of
reuse. A lower ceremony agile approach is used to build products, which are built
to meet customer requirements. The integration of components and products is
achieved by the use of product lines, families of products that enable the reuse of
components between multiple products. Unifying these hybrid approaches is an
integrated test framework that enables the quality assurance activities of
refactoring and pair programming to be effective.

Figure 2: Test-related quality assurance strategies in an integrated component-based and
agile development environment

8.0 Conclusions and Further Work

In this paper we have explored both agile development methods and their potential
use with hybrid development approaches alongside more prescriptive, high
ceremony methods. Previous research indicates that test based practices are
perhaps the most easily accepted and immediacy useful of agile practises that can
be integrated into existing formal approaches. Other authors have suggested that a
combination of agile and component based software development may be good
way to overcome the economic constraints on quality assurance in an agile
development environment. In this paper we have further proposed that test related
practices are the most significant enabler in providing quality assurance in hybrid
systems.

Research into combined component based and agile development has so far been
limited. Field studies are required to explore the issues raised in this paper
regarding the relationship between quality and the economics of agile
development, and the pivotal role of testing in improving project success and
overall software quality.

9.0 References

[1] Wallace L & Kell M (2004). Software project risks and their effect on
outcomes, Communications of the ACM, 47, 4, 68-73.

[2] Keil M & Robey D (2001). Blowing the whistle on troubled software
projects, Communications of the ACM, 44, 2, 87-93.

High ceremony
(model driven –
seeking best
solution)

Low ceremony
(rapid assembly,
customer driven)

components

products

Product
families

Product families
Unit tests,
regression tests,
acceptance tests

Product families

Unit tests,
regression tests

Pair programming, refactoring

Unit tests

[3] Mahaney R C & Lederer A L, Runaway information systems projects and
escalating commitment, proceedings of ACM SIGCPR conference on
computer personnel research, pp291 - 296, New Orleans, United States,
1999

[4] US Government Accounting Office, Report FGMSD-80-4: Contracting
for Computer Software development: Serious problems require
management attention to avoid wasting additional millions. 1979, US
Government Accounting Office.

[5] Extreme CHAOS, Standish Group, Standish Group International Inc.,
http://www.standishgroup.com/sample_research/PDFpages/extreme_chao
s.pdf, (visited January 2006)

[6] Sommerville I, Software Engineering (7th edition). Addison-Wesley
2004, ISBN 0-321-21026-3

[7] Whyte G & Bytherway A (1996). Factors affecting information systems'
success, International Journal of Service Industry Management, 7, 1, 74-
93.

[8] Avison D & Fitzgerald G, Information systems development:
methodologies, techniques and tools (2nd ed.). McGraw-Hill 1995, ISBN
0-632-01644-2

[9] de Abreu A & Conrath D, The role of stakeholders' expectations in
predicting information systems implementation outcomes., proceedings of
Conference on Computer Personnel Research, pp408-415, St Louis,
Missouri, United States, 1993

[10] Ewusi-Mensah K (1997). Critical Issues in Abandoned Information
Systems Development Projects, Communications of the ACM, 40, 9, 74-
80.

[11] Dhillon G, Interpreting Key Issues in IS/IT Benefits Management.,
proceedings of 33rd Hawaii International Conference on System Science,
pp1-9, Hawaii, 2000

[12] Ewusi-Mensah K, Software Development Failures. MIT Press 2003,
ISBN 0-262-05072-2

[13] Jayaratna N, Understanding and evaluating methodologies NIMSAD: A
systemic framework. McGraw-Hill 1994,

[14] Avison D & Fitzgerald G (2003). Where Now for Development?,
Communications of the ACM, 46, 1, 79-82.

[15] Taylor H (2001). Information Systems Development Practice in New
Zealand, New Zealand Journal of Applied Computing and Information
Technology, 5, 2, 80-84.

[16] Baird S, Teach Yourself Extreme Programming in 24 Hours. Sams
Publishing 2003, ISBN 0-672-32441-5

[17] Highsmith J, Agile Software Development Ecosystem. Addison-Wesley
2002, ISBN 0-201-76043-6

[18] Koch A S, Agile Software Development: Evaluating The Methods For
Your Organization. Artech house 2005, ISBN 1-5805-3842-8

[19] Abrahamsson P, Warsta J, Siponen M,Ronkainen J, New Directions on
Agile Methods: A Comparative Analysis, proceedings of 25th
International Conference on Software Engineering, pp244 - 254, Portland,

http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf

Oregon, 2003
[20] Lewis P J, Information Systems Development: Systems Thinking in the

Field of IS. Pitman 1994, ISBN 0-273-03107-4
[21] The New Methodology, Fowler M, MartinFowler.com,

http://www.martinfowler/articles/newMethodology.html, (visited January
2006)

[22] Martin R C, Agile Software Development: Principles, Patterns and
Practices. Prentice Hall 2003, ISBN 0-135-97444-5

[23] Pressman S, Software Engineering: A Practitioner's Approach (6th
edition). McGraw-Hill 2005, 0-07-285318-2

[24] Ceschi M, Sillitti A, Succi G,Panfilis S D (2005). Project Management in
Plan-Based and Agile Companies, IEEE Software, 22, 3, 21-27.

[25] Patton J, Hitting The Target: Adding Interaction Design to Agile Software
Development, proceedings of Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA), pp1 – ff,
Seattle, Washington, 2002

[26] Schatz B & Abdelshafi I (2005). Primavera Gets Agile: A Successful
Transition to Agile Development, IEEE Software, 22, 3, 36-42.

[27] Johnson J, Turning Chaos into Success, in Software Magazine. 1999.
p.30-39.

[28] Little T (2005). Context-Adaptive Agility: Managing Complexity and
Uncertainty, IEEE Software, 22, 3, 28-35.

[29] Grossman F, Bergin J, Leip D, Merritt S,Gotel O, One XP Experience:
Introducing Agile (XP) Software Development Into a Culture That is
Willing But Not Ready., proceedings of 2004 Conference of the Centre
for Advanced Studies on Collaborative Research, pp242-254, Markham,
Ontario, Canada, 2004

[30] Cockburn A, Agile Software Development. Pearson Education, Inc 2001,
ISBN 0-201-69969-9

[31] Caterpillar Digs into Agile Development, DePauw T,
http://www.computerworld.com/printthis/2002/0,4814,67147,00.html,
(visited January 2006)

[32] Users Warm Up To Agile Programming, Sliwa C, ComputerWorld,
http://www.computerworld.com/printthis/2002/0,4814,69182,00.html,
(visited January 2006)

[33] Lindstrom L & Jeffries R (2004). Extreme Programming and Agile
Software Development Methodologies, Information Systems
Management, 21, 3, 41-52.

[34] Thomas D (2005). Agile Programming: Design to Accommodate Change,
IEEE Software, 22, 3, 14-16.

[35] Cockburn A & Highsmith J (2001). Agile Software Development: The
People Factor, IEEE Computer, 34, 11, 131-133.

[36] Stephens M & Rosenberg D, Extreme Programming Refactored: The
Case Against XP. Apress 2003, ISBN 1-59-059096-1

[37] Beck K, Extreme Programming Explained: Embrace Change. Addison-
Wesley 1999, ISBN 0-201-61641-6

[38] Fowler M, Refactoring: Improving the Design of Existing Code. Addison-

http://www.martinfowler/articles/newMethodology.html
http://www.computerworld.com/printthis/2002/0,4814,67147,00.html
http://www.computerworld.com/printthis/2002/0,4814,69182,00.html

Wesley 1999,
[39] Fowler M & Highsmith J (2001). The Agile Manifesto, Software

Development.
[40] Melnik G & Maurer F, Introducing Agile Methods: Three Years of

Experience, proceedings of 30th EUROMICRO Conference
(EUROMICRO'04), 2004

[41] Ambler S, The Object Primer: Agile Model-Driven Development with
UML 2.0 (3rd edition). Cambridge University Press 2004, 0-521-54018-6

[42] Huo M, Verner J, Zhu L,Babar M A, Software Quality and Agile
Methods, proceedings of 28th Annual International Computer Software
and Applications Conference (COMPSAC'04), 2004

[43] Highsmith J & Cockburn A (2001). Agile Software Development: The
Business of Innovation, IEEE Computer, 34, 9, 120-122.

[44] Tomayko J & Herbsleb J, How Useful Is the Metaphor Component of
Agile Methods? A Preliminary Study. 2003, School of Computer Science,
Carnegie Mellon.

[45] Manhart P & Schneider K, Breaking the Ice for Agile Development of
Embedded Software: An Industry Experience Report, proceedings of 26th
International Conference on Software Engineering (ICSE'04), pp378-386,
Edinburgh, Scotland, 2004

[46] Turner R & Jain A, Agile Meets CMMI: Culture Clash or Common
Cause?, proceedings of Second XP Universe and First Agile Universe
Conference on Extreme Programming and Agile Methods - XP/Agile
Universe 2002, pp153-165, Chicago, IL, USA, 2002

[47] Lycett M, Macredie R, Patel C,Paul R (2003). Migrating Agile Methods
to Standardized Development Practice, IEEE Computer, 36, 6, 79-85.

[48] Rosenberg D, Stephens M,Collins-Cope M, Agile Development with
ICONIX Process. Apress 2005, ISBN 1-59059-464-9

[49] Armitage J (2004). Are Agile Methods Good for Design?, Interactions,
11, 1, 14-23.

[50] DeMarco T & Boehm B (2002). The Agile Methods Fray, IEEE
Computer, 35, 6, 90-92.

[51] Meyer B, The Grand Challenge of Trusted Components, proceedings of
25th International Conference on Software Engineering, pp660 - 667,
Portland, Oregon, 2003

[52] Radinger W & Goeschka K M, Agile Software Development for
Component Based Software Engineering, proceedings of Conference on
Object Oriented Programming Systems Languages and Applications,
pp300 - 301, Anaheim, CA, USA, 2003

[53] Agile Components: Scaling XP, Wills A C, Trireme International Ltd,
http://www.trireme.com/whitepapers/process/xp-uml/agilePLA.pdf,
(visited January 2006)

http://www.trireme.com/whitepapers/process/xp-uml/agilePLA.pdf

