
Page 1 of 5 

Extending the Client Side Object Model in the Location API for 

J2ME
TM

 

A position paper for the 11
th

 ECOOP MOS Workshop 
 

David Parsons 

Institute of Information and Mathematical Sciences 

Massey University, Auckland, New Zealand 

d.p.parsons@massey.ac.nz 

 

Abstract 
 

Location based service applications comprise a number of layers, distributed between clients and 

servers, either (or both) of which may be mobile. One of these layers is the Application Programming 

Interface (API) that enables an application to acquire information about the location of mobile devices 

and points or areas of interest. A number of location APIs have been developed that are intended for 

use by applications running on large terminals. However more recently we have seen the development 

of APIs that are designed to be hosted by small mobile clients. In this paper we explore the Location 

API for J2ME, a standard Java mobile client API that is intended to provide a generic interface to 

multiple positioning technologies. In particular we investigate the relationship between the client side 

object model and some resource constraint issues that impact on the practical usage of this API as part 

of a larger location-based service infrastructure. We also consider how the current object model might 

evolve to provide a more comprehensive framework for location based services. 

 

1.  Location APIs 
 

Location based service applications are supported by APIs that give access both to simple objects that 

encapsulate raw geolocation data and other more complex objects that may represent points or areas of 

interest, mobile components, context information or routing advice. The various underlying positioning 

technologies that support such applications can be categorised as either device aware, where a mobile 

communications infrastructure is able to ascertain the location of devices within it, or location aware, 

where a device is able to ascertain its own location without assistance from the infrastructure [Bu04]. 

Most published location APIs [Er03, Or04, Re04] are based on the non-generic Mobile Location 

Protocol [LI04], which works on the assumption that the locating system is a device aware cellular 

network (providing, for example, information about cell shape and area) and that location information 

is only available to clients by being pulled from a server-based API. In contrast, in a location aware 

system where a client device incorporates positioning technology (e.g. GPS), the location API can be 

installed on the mobile device, which can then manage its own location related data. An API 

implemented on the client can take responsibility for its own geocoding (deriving a location from a 

landmark) and reverse geocoding (deriving a landmark from a position) by maintaining a local database 

of point of interest (POI) data. This information may then be used for local processing (such as 

calculating the azimuth or distance from one position to another) or for managing ad-hoc networks (e.g. 

Bluetooth networks) that do not require the support of a control network. 

 

Generic location APIs, which can utilise both device aware and location aware systems, encourage new 

and longer-lived location aware applications and, since they are able to transparently combine location 

information from multiple sources, promote the adoption and integration of new location sensing 

technologies [CS03]. Supporting multiple positioning technologies enables applications to make 

selections between alternative available systems, depending on quality, suitability or priority [ME02, 

RL03]. The move towards generic location APIs that can be hosted on the mobile client raises a 

number of important questions. First, there are considerations relating to the resources required to 

support such APIs. Second, there is a question as to how useful a partial offloading of a location object 

model to the client may be. Location based services can be person oriented (e.g. ‘finder’ type 

applications such as [Ro04]) or device oriented (e.g. ‘tracker’ applications, as described by [Ta03]) and 

require specialised object models to represent these domains. Location applications also require the 

support of special purpose databases, which may include combinations of digitised maps, yellow pages, 

user profiles and dynamic data such as current weather conditions, traffic information and moving 

object trajectories [Tr04]. Again, complex object models are required to represent this information in 



Page 2 of 5 

an object-oriented application. Since it is unlikely that many of these models can realistically be fully 

hosted on the client, we must ask which subsets, if any, can be usefully based or replicated on a mobile 

device. In the following discussion we explore some aspects of the object model that is used by the 

generic client-hosted Location API for J2ME [Lo04], identify some resource constraint and object 

modelling issues, and suggest some ideas for the further development of this API. 

 

2. The Location API for J2ME 
 

The Java Location API for J2ME became available at the specification and reference implementation 

level in late 2003. Nokia published a reference implementation that can be used for simulation purposes 

in 2004 [No04] and device implementations have followed, including the Motorola iDEN i860 

platform [Mo05]. The API defines a generic interface for location data that is intended to be deployed 

on small mobile devices and work with most positioning methods. The object model covers two aspects. 

First, there are a number of classes that support the gathering of location data (LocationProvider, 

Location, Coordinates, Orientation, etc.). This aspect of a client side API can be seen as particularly 

useful in the sense that as long as the device is location aware, hosting this part of the object model on 

the client avoids unnecessary calls to a server for location data. With a Java enabled client, these 

objects can be processed locally, for example to calculate distances and azimuths between coordinates 

or to monitor quality of service parameters. The second aspect of the object model is a set of classes 

and interfaces that support local storage of POI data, in the form of a database object known as the 

LandmarkStore, and Landmark objects that may be stored within it. The main role of this database is to 

enable the geocoding and reverse geocoding of landmark POIs.  

 

2.1 Resource issues 

 

Given that the Location API for J2ME has an object model that goes beyond simple positioning data to 

managing a landmark database, there are implications for the potential resource demands of 

applications using this API. The LandmarkStore has no maximum size (or indeed maximum number of 

separate stores) defined by the specification but will be limited in practice by physical memory size and 

probably by vendor implementations (for example the Motorola implementation limits the store size to 

256 landmarks and allows only one store). Given these constraints, the LandmarkStore would have to 

be used as a dynamic cache in most location based applications, storing only the currently relevant 

landmarks. To avoid application exceptions due to insufficient available storage, we would have to 

adopt a suitable strategy for downloading new Landmark objects and discarding old objects according 

to the current location and perhaps some kind of least recently used (LRU) algorithm. However there is 

no specification within the location API that suggests this kind of necessary caching behaviour, without 

which attempting to add a Landmark to a full store will throw an I/O exception. 

 

In addition to the storage of Landmarks that are specified within the API, there will be many other 

types of semi-persistent data that will be required in a client-hosted location based application. For 

example, since most location based service applications rely to some extent on utilising map data, a 

typical resource demand in a location based system is the requirement to support image files. Since 

most applications will require access to map data much larger than could reasonably be stored on a 

small mobile device, maps have to be divided into cells that can be efficiently tiled on the client display 

[Je04]. Once map components have been downloaded from the server it is helpful to retain them in 

some form of image cache, preferably related to the current content of the landmark store. Currently the 

location API provides no support for this kind of image cache, but if caching support were added to the 

LandmarkStore then a similar form of memory management could be applied to other application 

components and these could be linked together via listeners. It may be appropriate to consider a generic 

caching interface that could be utilised with different types of object in location based applications. 

Since a mobile device data store might be regarded as similar to an in-memory cache that replicates 

part of a larger database of objects, transparent persistence mechanisms such as those used with Java 

Data Objects [JDO03] might provide us with some ideas for managing local object stores. Methods to 

selectively evict or refresh objects in the cache using a range of parameters would be very useful in the 

LandmarkStore or other associated stores. Figure 1 shows how a proposed CachingStore interface 

might be integrated into the existing API and allow extensions for new stores 



Page 3 of 5 

 
 

Figure 1: Integrating a CachingStore interface into the API 

 

2.2 Extending the object model 

 

The current J2ME location API provides us with an object model that only pushes the boundaries a 

little in terms of supporting rich location based applications on the client. An application that directly 

uses the object model provided by the location API will be primarily a reverse geocoding service, i.e. 

given a three dimensional location specified by latitude, longitude and altitude it will return 

information about that location, such as its street address. Although there are methods to calculate 

distance and azimuths between coordinates, these coordinates are tightly coupled in the API with 

Locations (stored as Landmarks.) Since the API essentially only enables us to interact with Location 

objects and Landmarks, useful applications will need to add additional layers of functionality to the 

client. A location based service framework that could support, for example, route finding or friend 

finding applications, would require the representation of mobile objects, their behaviours and their 

contexts. It would need to incorporate methods for tracking, finding and querying such objects and 

encapsulate an explicit query language. It is clear that the current location API does not provide an 

adequate framework for any but the simplest of location based services, and that even then the 

developer has to code defensively to cater for the limited sophistication of the LandmarkStore. Since 

the existing object model would be only a small part of a realistic application, it seems appropriate to 

consider whether it is worth developing the API further, or alternatively to acknowledge that extending 

the client side object model to anything beyond raw positioning data is unproductive and that more 

complex elements of the object model should remain on the server. 

 

3. Conclusions 
 

In this paper we have explored some issues within the Location API for J2ME specification relating 

both to resource management and object modelling for location based services. In terms of resource 

management we are concerned that there is no intrinsic link between the API implementation and any 

automatic cache management or middleware layer that could transparently balance the resource 

demands on the client by intelligently freeing memory and/or interacting with the server. This indicates 

a need to design location-based applications to use local database resources carefully, since 

unrestrained use of the landmark store, for example, will soon lead to the inability to store new 

landmarks. Because the store does not automatically evict stale data, it is not, unmodified, a suitable 

cache for dynamically changing data. This caching behaviour could usefully be added either to the 

landmark store implementation or, more realistically if we are using a third party implementation of the 

location API, to a wrapper layer. Useful further work could be done in building data management 

relationships between the location API and middleware, for example by using a distributed Java Data 

LandmarkStore 

«interface» 

CachingStore 

 

evictAll() 

evict(Object) 

evict(Filter) 

evict(Timestamp) 

refreshAll() 

refresh(Object) 

refresh(Filter) 

refresh(Timestamp) 

 

MapTileStore xxxStore 



Page 4 of 5 

Objects architecture similar to that described by [PKC05], whereby the persistence layer could manage 

the transfer of data between the local cache database and the server. 

 

In addition to these concerns about implementations of the current object model specification, we have 

also addressed some questions about the overall semantics of a client side location API that attempts to 

expand the object model beyond the core components of location and orientation data that may be 

locally determined. The inclusion of a LandmarkStore is just one aspect of object models for location 

based services, but there are many more common objects that could be integrated into location based 

service frameworks. It is not suggested that all of these should be integrated into a core API, but it may 

be appropriate to consider a number of extension packages that could provide a standard set of Java 

APIs for the more common types of location based services. Alternatively orthogonal frameworks 

could be developed on top of the current Java API both to mitigate its weaknesses and extend its 

functionality. 

 

In summary we believe that the current location API for J2ME does not yet provide an adequate 

framework for the management of data intensive location based services. The current specification may 

evolve to include such features as cache management within the landmark store, but in the meantime it 

may be necessary to add a utility wrapper layer above the current API to provide these and other 

services to ensure robust and efficient applications. Further, we suggest that the viability of moving 

location based service functions onto the client is dependent on developing a richer reusable framework 

that can support features such as mobile object representation without placing excessive resource 

demands on the mobile client. 

 

 

References 

 
 

[Bu04] Butz, A. 2004. Between location awareness and aware locations: where to put the intelligence, Applied 

Artificial Intelligence, Special Issue on AI in Mobile Systems. 18(6). 

 

[CS03] CSTB. 2003. IT Roadmap to a Geospatial Future. Washington D.C.: National Academies Press. 

 

[Er03] Ericsson, Mobile Positioning Protocol Specification Version 5.0, Ericsson, 2003, 

http://www.ericsson.com/mobilityworld/developerszonedown/downloads/docs/mobile_positioning/mpp5

0_spec.pdf, last accessed 20th December, 2004 

 

[JDO03]  Java Data Objects Expert Group. 2003. JavaTM Data Objects JSR12 Version1.0.1, Sun Microsystems, 

http://jcp.org/aboutJava/communityprocess/final/jsr012/index2.html 

 

[Je04] Jensen, C. 2004. Database Aspects of Location-Based Services, in Location-Based Services, J. Schiller 

and A. Voisard, Editors. Morgan Kaufmann: San Francisco. p. 115-148.  

 

[LI04] LIF. 2002. Mobile Location Protocol Specification Version 3.0.0, Location Interoperability Forum, 

http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html, last accessed December 17th, 2004 

 

[Lo04] Loytana, K. 2003. JSR-000179 Location API for J2METM (Final Release), Java Community Process, 

http://jcp.org/aboutJava/communityprocess/final/jsr179/index.html, last accessed December 17th, 2004 

 

[ME02] Myllymaki, J. and S. Edlund. 2002. Location aggregation from multiple sources. Third International 

Conference on Mobile Data Management. IEEE. p.131-138 

 

[Mo05] Motorola. 2004. iDEN i860 SDK - Ver 1.1 for J2ME(™) Technology. Motorola, 

http://idenphones.motorola.com/idenDeveloper/developer/developer_home.jsp, last accessed 9th 

February, 2005 

 

[No04] Nokia. 2004. RI Binary For JSR-179 Location API For J2METM. Nokia. 

 

[Or04] Orange, Orange UK Location API. 2004. 

 

[PKC05] Parsons, D., I. Kirsh and M. Cranshaw.  2005. Java Technology for the Wireless Industry – Toys or 

Tools? Java Developers Journal, 10(1). 

 

http://www.ericsson.com/mobilityworld/developerszonedown/downloads/docs/mobile_positioning/mpp50_spec.pdf
http://www.ericsson.com/mobilityworld/developerszonedown/downloads/docs/mobile_positioning/mpp50_spec.pdf


Page 5 of 5 

[Re04] Redknee, Synaxis-2200™: ELS Release 2.0 Client Interface Specification Document, Redknee Inc., 

2002, http://www.sourceo2.com/O2_Developers/Tools/Location_API.htm, last accessed 17th December, 

2004 

 

[RL03] Ranchordas, J. and A. Lenaghan. 2003. A Flexible Framework for using Positioning Technologies in 

Location-Based Services. EUROCON 2003 - Computer as a Tool. Ljubljana, Slovenia: IEEE. p.95-98 

 

[Ro04] Roth, J. 2004. Data Collection, in Location-Based Services, J. Schiller and A. Voisard, Editors. 2004, 

Morgan Kaufmann: San Francisco. p. 175-205. 

 

[Ta03] Taylor, S. 2003. Developing automatic vehicle location systems. Computing & Control Engineering 

Journal, 14(1): p.20-25. 

 

[Tr04] Trajcevski, G., O. Wolfson, K. Hinrichs, and S. Chamberlain. 2004. Managing Uncertainty in Moving 

Objects Databases. ACM Transactions on Database Systems. 29(3). 

 

 

http://www.sourceo2.com/O2_Developers/Tools/Location_API.htm

