
Page 1 of 10

Exploring the Location API for J2ME
(pre-print of article in Dr Dobbs Journal, January 2006, 53-8)

David Parsons

Massey University, Auckland, New Zealand

d.p.parsons@massey.ac.nz

1. Introduction

The Java Location API for J2ME
TM

 is intended to run on small client devices such as mobile phones. It

integrates generic positioning and orientation data with persistent storage of point of interest (POI) objects

known as Landmarks. Although there are now a few phones and software tools, including models and emulators

from Ericsson and Nokia, which implement this API, developers wishing to work with it have been constrained

by a limited set of options for simulating location data. Both the current Nokia and Ericsson tools limit input to

GPS data (e.g. from a log file). To provide a somewhat more interactive approach, this article provides an

introduction to the API using a map based simulation environment designed to work easily with the Sun J2ME

Wireless Toolkit.

Although there are some other Java location APIs in the public domain, these are mostly based on the Mobile

Location Protocol published by the Location Interoperability Forum (LIF). This works on the assumption that

the system is a device aware cellular network, and that location information is pulled in XML format from a

server-hosted API. In contrast, the Location API for J2ME is a client side generic location interface that is

intended to work with many different positioning methods. Generic interfaces enable us to implement systems

that span multiple sources of location information at the same time. This will become increasingly important as

the devices and channels for tracking locations increase, enabling us to aggregate and prioritise different

information sets that relate to the same target, as well as being able to choose between multiple methods of

determining the location of a single device. This provides a number of advantages including fail-over,

indoor/outdoor transparency and a choice between the speed and accuracy trade-offs that could be made between

GPS, cellular or other positioning mechanisms.

 In this article we introduce the object model used in the Location API and look at some simple code

examples that you can explore using the map based simulator, which can be freely downloaded. The locations

used in the examples described here are based on a map of Massey University’s Auckland campus in New

Zealand.

2. The Location API Object Model

The Location API object model consists of eleven classes and two listener interfaces (LocationListener and

ProximityListener), all in the javax.microedition.location package

. Their design approach uses several standard

patterns, including Façade, Factory Method, Singleton and Value Object, and standard JavaBeans–style

accessors. Of the eleven classes, two are Exception classes (LocationException and LandmarkException) and

another four (AddressInfo, Criteria, Orientation, and QualifiedCoordinates) are primarily value objects. Many of

the properties of these objects may in practice be unavailable, depending on the location finding technology that

is implementing the API, but these properties anticipate likely future developments in mobile networks and

devices and the level of location and context detail that they will be able to provide.

2.1 Location related classes

Location objects are immutable aggregates of AddressInfo and QualifiedCoordinates objects. Location

instances are acquired from a LocationProvider, a façade to the mobile device‟s underlying location information

that consists of a factory method (parameterised by a Criteria object) to retrieve a LocationProvider instance,

methods to return current or last-known Location objects and methods to register listeners for location and

proximity events. The Coordinates class (the superclass of QualifiedCoordinates) encapsulates geometric

methods such as calculating the azimuth (angle) and distance between locations.

 Because the J2ME Wireless Toolkit does not allow new classes to be created in system packages, this implementation uses

the alternative package name massey.microedition.location

Page 2 of 10

The Orientation class is completely separate from the rest of the object model, having no association or

dependency relationships with any other classes. This is presumably because not all devices will be able to

support orientation information. At a minimum, the device must be able to provide a compass azimuth value to

support Orientation objects, with optional support for pitch and roll values. Orientation objects can be derived

either from a factory method or from a parameterised constructor.

The classes discussed so far encapsulate the subset of the API that is directly related to the acquisition of

location information from whatever underlying technology is available to the device. These are summarised in

Figure 1.

Figure 1: The Location related subset of the API

2.2 A simple location based program

Having introduced those classes that relate to location finding, we will look at a simple MIDlet that displays the

current location of the device on the screen (the complete MIDlet is shown in listing 1). The interaction with the

Location API in this example is very simple. First, we access the LocationProvider using the static factory

method getInstance. The parameter is a Criteria object that can be used to set quality of service parameters,

but in this example we will simply pass a null reference.

 try

 {

 locationProvider = LocationProvider.getInstance(null);

 }

 catch(LocationException e)

 {

 // handle exception

 }

The LocationProvider can now be used to get the current location. The parameter to the getLocation method

is the timeout period.

 try
 {

 location = locationProvider.getLocation(20);

 }

 catch(LocationException e)

 {

 // handle exception

 }

 catch(InterruptedException e)

 {

 // handle exception

 }

Once we have a Location object we can use it to find out our current latitude, longitude, altitude, direction and

speed by accessing the QualifiedCoordinates object that is aggregated inside it.

 coordinates = location.getQualifiedCoordinates();

A location may also contain an AddressInfo object, with details such as the location’s postal address, phone

number, country, URL etc. However depending on the implementation and context there may not actually be an

Coordinates

QualifiedCoordinates

Location

AddressInfo

LocationProvider creates Orientation

Criteria

configures

Page 3 of 10

AddressInfo associated with a given location. For example, if you are standing in the middle of a field there will

be no AddressInfo data. In the simulator implementation described here, the AddressInfo is always null.

Our current course, speed and altitude are returned from the QualifiedCoordinates object as float

values, while latitude and longitude are returned as doubles. To assist the display of location data, the

Coordinates class includes a method to convert a coordinate object into a String representation in either of two

formats:

Format 1: Degrees, Minutes, and decimal fractions of a minute.

For example, for the double value of the coordinate 61.51d, the formatted string is 61:30:36

Format 2: Degrees, Minutes, Seconds and decimal fractions of a second.

For example, for the double value of the coordinate 61.51d, the formatted string is 61:30.6.

In the example MIDlet we use the second format, selected using the constant field Coordinates.DD_MM_SS.

Alternatively, format 1 can be selected using Coordinates.DD_MM. Here is the fragment of the MIDlet where

the location information is displayed on the screen, using a series of StringItems.

 latitude = new StringItem("Latitude: " +

 Coordinates.convert(coordinates.getLatitude(), Coordinates.DD_MM_SS), "");

 longitude = new StringItem("Longitude: " +

 Coordinates.convert(coordinates.getLongitude(), Coordinates.DD_MM_SS), "");

 altitude = new StringItem("Altitude: " + coordinates.getAltitude(), "");

 direction = new StringItem("Course: " + location.getCourse(), "");

 speed = new StringItem("Speed: " + location.getSpeed(), "");

 locationForm.append(latitude);

 locationForm.append(longitude);

 locationForm.append(altitude);

 locationForm.append(direction);

 locationForm.append(speed);

 display.setCurrent(locationForm);

Figure 2 shows a screen dump from the J2ME Wireless Toolkit (version 2.2) with the current location details

being displayed. Instructions for installing and running the simulation environment and example MIDlets are

included in the code download.

Figure 2: Location details displayed by the MIDlet

3. Using the Location and Proximity Listeners

Page 4 of 10

The LocationProvider can register two types of listener; a single LocationListener and/or multiple

ProximityListeners (Figure 3). These listeners help us to create more dynamic location based services that can be

triggered by location related events.

Figure 3. The listener interfaces

3.1 The LocationListener

In our previous example, we used the LocationProvider to find out the current location whenever the ‘refresh’

button was pressed on the phone. This is not a very flexible approach and it would be better if we could

automatically trigger an event whenever the current location changed, without having to make an explicit call to

getLocation. We can achieve this behaviour by using the LocationListener interface, which we can use to

listen for updates to the current location. Only one LocationListener can be registered with the LocationProvider

at any one time, so this listener can therefore act as a kind of Singleton for all components that need location

information. The LocationListener is updated with current location information at specified intervals and it can

expose and process that information in an application specific context to be accessed by other components on

demand. In the next code example, to keep things simple, we make the MIDlet itself the LocationListener (listing

2). In order to listen to location events, our MIDlet has to implement the LocationListener interface:

 public class LocationListenerMIDlet extends MIDlet

 implements CommandListener, LocationListener

Once the MIDlet implements the LocationListener interface, it can be registered with the LocationProvider as

the current LocationListener via the setLocationListener method. The three parameters to this method are

the listener, the interval between updates, the timeout period and the maximum acceptable age for location

information:

 try

 {

 locationProvider = LocationProvider.getInstance(null);

 locationProvider.setLocationListener(this, 20, 10, 10);

 }

 catch(LocationException e)

 {

 // handle exception

 }

The listener interface contains two methods; locationUpdated and providerStateChanged. The

LocationProvider triggers the locationUpdated method whenever the location changes. The

providerStateChanged method is informed when the state of the LocationProvider changes between its three

possible states, LocationProvider.AVAILABLE, LocationProvider.TEMPORARILY_UNAVAILABLE and

LocationProvider.OUT_OF_SERVICE. In the example MIDlet only the locationUpdated method is

implemented, simply calling the method that refreshes the screen form:

 public void locationUpdated(LocationProvider provider, Location location)

 {

 this.locationInfo();

LocationProvider

LocationListener

locationUpdated
providerStateChanged

ProximityListener

proximityEvent

monitoringStateChanged

0..1 0..*

Page 5 of 10

 }

With these few changes to the MIDlet, we can now automatically update the location display whenever the

location has changed, without having to press the ‘refresh’ button and do a manual update.

3.2 ProximityListeners

In the previous example we saw how a mobile application can use the LocationListener interface to listen for

updates to the current location. In addition, we can implement the ProximityListener interface, which enables us

to trigger events when we approach specified locations. Unlike the LocationListener, which can have only one

registered instance, the LocationProvider allows us to register multiple ProximityListeners. Our third example

MIDlet (listing 3) adds proximity monitoring to the existing location monitoring:

 public class ProximityListenerMIDlet extends MIDlet

 implements CommandListener, LocationListener, ProximityListener

This time, when the MIDlet starts up, it registers itself three times so that we can listen for proximity events for

three different locations (in this case three of the buildings on the map used in the simulator, the Study Centre,

the Quadrangle and the Atrium). Each registration requires the listener, the coordinates and the required

proximity radius from these coordinates as parameters.

 try

 {

 locationProvider = LocationProvider.getInstance(null);

 locationProvider.setLocationListener(this, 20, 10, 10);

 // radius used to trigger proximity alerts

 float radius = 100.0F;

 // coordinates of the Study Centre

 locationProvider.addProximityListener(this, studyCentreCoordinates, radius);

 // coordinates of the Quadrangle building

 locationProvider.addProximityListener(this, quadrangleCoordinates, radius);

 // coordinates of the Atrium

 locationProvider.addProximityListener(this, atriumCoordinates, radius);

 }

The ProximityListener interface has two methods, monitoringStateChanged and proximityEvent. The

monitoringStateChanged method simply informs listeners whether or not proximity notification is currently

active. The proximityEvent method provides two parameters, the coordinates originally registered with the

LocationProvider and the current location. In our implementation we compare the given coordinates with the

ones we are listening for and select the matching location.

 public void proximityEvent(Coordinates coordinates, Location location)
 {

 if(coordinates.equals(studyCentreCoordinates))

 {

 showStudyCentreProximityAlert();

 }

 if(coordinates.equals(quadrangleCoordinates))

 {

 showQuadrangleProximityAlert();

 }

 if(coordinates.equals(atriumCoordinates))

 {

 showAtriumProximityAlert();

 }

 }

The various alerts simply display an image of the appropriate building. Figure 4 shows the proximity alert for the

Study Centre being displayed on the mobile device. If you find you get excessive thrashing between the location

and proximity listeners both trying to trigger the screen, you can remove the LocationListener code from this

example.

Page 6 of 10

Figure 4: An alert triggered by a ProximityListener

4. Landmarks and the LandmarkStore

What particularly marks out this API from other location based class libraries is the use of local storage to

provide a persistent database of landmarks. This shifts the emphasis very much onto the mobile client in terms of

location aware applications, enabling a local mapping from physical positions to points of interest. This

approach means that at least part of a location aware application can be installed on the mobile device rather

than on the server. One key advantage of this is that applications are more likely to have useful functionality

even where network connectivity is unreliable.

The API includes two classes to support the persistent storage of location related data, namely the Landmark

and the LandmarkStore (Figure 5). Landmark objects, like Location objects, are partial aggregates of

AddressInfo and QualifiedCoordinates objects, but Landmarks and Locations have different roles in the

architecture. Location objects are immutable and transitory, reflecting the dynamic movement of a mobile

device. In contrast, Landmark objects are intended to be persisted in the mobile datastore and are mutable, so

might be updated over time.

QualifiedCoordinates

Landmark

AddressInfo

LandmarkStore

*

name

description

*

Page 7 of 10

Figure 5. The classes related to persistent storage

The LandmarkStore acts as a facade to the underlying data store on the device, and is simply a collection of

landmarks. There can be many LandmarkStores on a device, shared by multiple applications. Landmarks may

optionally be stored under a category name, and may be added to multiple stores and multiple categories. The

only restriction is that a Landmark cannot be added to the same category in the same LandmarkStore more than

once. Be aware, however that the local data store will have restricted capacity, with storage limited to no more

than a few hundred landmarks.

An important feature of the API is that a Landmark object can be populated from the coordinate and address

data of a Location generated by the LocationProvider (provided of course that the LocationProvider is able to

include an AddressInfo along with the QualifiedCoordinates.) This means that Landmarks can be dynamically

added to the store.

In addition, Landmark objects already in the LandmarkStore can be linked with Location objects in terms of

listener behaviour (Figure 6). A mobile application can register multiple ProximityListeners that can be triggered

when the current location is within a specific range of a given Landmark. When a proximity event occurs the

appropriate Landmark can be retrieved from the store.

Figure 6: Using ProximityListeners with Landmarks in the LandmarkStore

There are two basic scenarios for an application that utilises the LandmarkStore. First, the store can be a

small static collection of application specific Landmarks that rarely needs updating. ProximityListeners could be

permanently registered to trigger proximity responses to the fixed landmarks. Systems that must deal with a

larger set of Landmarks would require more dynamic provision of landmark information. In this context, the

Landmark store would not contain preloaded objects but would add and remove them dynamically, using

suitable push and/or pull mechanisms. A hybrid approach might also be used, with batch replacements of data

based on movement between larger areas. ProximityListener registration and de-registration would also need to

be dynamic, or alternatively, instead of using Proximity Listeners, the API supports searching the

LandmarkStore for Landmarks that fall within a specified area.

To keep things simple, our final example (listing 4) assumes a pre-populated LandmarkStore that we use to

display information about Landmarks when triggered by a proximity listener. In the previous example, we used a

ProximityListener to display alerts when we came close to certain coordinates. In this MIDlet we display

information from the LandmarkStore instead. The first step is to get an instance of the LandmarkStore (the null

parameter indicates the default store).

 landmarkStore = LandmarkStore.getInstance(null);

In our example we create the Landmark objects at start-up and write them to the LandmarkStore. The Landmark

constructor requires a landmark name, a description, a set of coordinates and an AddressInfo:

 Landmark landmark1 = new Landmark
 ("Study Centre", "Building on campus", studyCentreCoordinates, info);

Each landmark is added to the LandmarkStore using a category name. In this case the category is “campus”

LandmarkStore

Location

ProximityListeners

Page 8 of 10

 landmarkStore.addLandmark(landmark1, "campus");

Later in the MIDlet we retrieve the landmark that we need using the getLandmarks method:

 Enumeration e = landmarkStore.getLandmarks("campus", "Study Centre");

 Landmark landmark = (Landmark)e.nextElement();

 AddressInfo info = landmark.getAddressInfo();

Once the AddressInfo object is retrieved it can be displayed on the screen (Figure 7).

Figure 7: Displaying the AddressInfo from the Landmark

5. Using the Location API for J2ME simulator

To test the code in this article you will need to install and run the map based simulator. The simulator consists

of three components:

1. A Swing application that lets a user control the direction and speed of a virtual mobile device moving

across a map in a desktop environment. The virtual mobile device makes itself available to clients via

the RMI registry

2. A simple web application that reads position data from the Swing application and publishes it to http

clients via a JavaBean embedded in a JavaServer Page

3. An implementation of the Location API for J2ME that can be deployed into the Sun J2ME Wireless

Toolkit as a jar file. This implementation acquires position data by connecting over http to the web

application.

Although this three layer design may seem a little complex, it enables loose coupling between the Wireless

Toolkit and the simulator. Since the LocationProvider implementation could only work with libraries available

on the CLDC/MIDP platform (or we would not be able to also use the implementation on a mobile device) it is

not possible to use RMI direct from the Wireless Toolkit. One advantage of this architecture is that both

simulated and actual wireless devices can easily access the same data from the web server. Figure 8 summarises

the various layers and components in the simulation system. Detailed instructions on how to configure and run

the simulator can be found in the ‘location readme’ file in the downloadable archive.

…

Page 9 of 10

Figure 8. The layers and components of the simulation system

6. What’s not in the API?

Before we conclude, it is worth briefly looking at aspects that are not included in this API. One feature that is

present in some APIs, but not this one, is topological data, which is usually derived from the shapes of cell site

coverage. Regardless of the underling technology, „area of interest‟ data can be just as useful as point of interest

data. The best we can do in this API is to define an area by its radius from a point but the facility to acquire

topological data when available might be useful in some applications. There is also no support for location based

queries, though these are fundamental to the use of server hosted spatial databases (such as Oracle‟s spatial

database) that support LBS. Perhaps a client side query language could be a useful feature, enabling the client to

build queries to be executed on the server. Other aspects of spatial databases such as yellow pages, routing and

mapping are also key components of location based service but could not reasonably be expected to be hosted on

a client device. However it might be useful if the API provided some facilities to interact with such systems.

Perhaps in future versions of the specification we will see extensions to the API to enable more functionality on

the mobile client.

References

Ericsson, Mobile Positioning Protocol Specification Version 5.0, Ericsson, 2003,

http://www.ericsson.com/mobilityworld/developerszonedown/downloads/docs/mobile_positioning/mpp50_spec.

pdf, last accessed June 3
rd

, 2005

Ericsson, MPC Map Tool. 2003, Ericsson.

http://www.ericsson.com/mobilityworld/sub/open/technologies/mobile_positioning, last accessed June 3
rd

, 2005

Henson, N., 2004. Float11: Class for float-point calculations in J2ME applications CLDC 1.1 (Version 0.5)

http://henson.newmail.ru/j2me/Float11.htm, last accessed June 3
rd

, 2005

LIF, Mobile Location Protocol Specification Version 3.0.0, Location Interoperability Forum, 2002,

http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html, last accessed June 3
rd

, 2005

Java Location

API (J2ME)

HTTP connection
Location Data

Web Server

(J2EE)

Mobile Object

Map GUI (J2SE)

RMI Registry

Display map and

moving device

Register remote

mobile device

Read current

location from

registry

Enable lookup of

remote mobile

device

Server JSP page

containing

location data

Read current

location from

JSP RMI connections

Run MIDlet

http://www.ericsson.com/mobilityworld/developerszonedown/downloads/docs/mobile_positioning/mpp50_spec.pdf
http://www.ericsson.com/mobilityworld/developerszonedown/downloads/docs/mobile_positioning/mpp50_spec.pdf
http://www.ericsson.com/mobilityworld/sub/open/technologies/mobile_positioning
http://henson.newmail.ru/j2me/Float11.htm
http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html

Page 10 of 10

Loytana, K., JSR-000179 Location API for J2ME
TM

 (Final Release), Java Community Process, 2003,

http://jcp.org/aboutJava/communityprocess/final/jsr179/index.html, last accessed June 3
rd

, 2005

McGovern, A., 2004. Geographic Distance and Azimuth Calculations. Retrieved 14th June, 2005, from

http://www.codeguru.com/Cpp/Cpp/algorithms/general/article.php/c5115/ last accessed June 3rd, 2005

Nokia, RI Binary for JSR-179 Location API for J2ME
TM

. 2004, Nokia.

http://forum.nokia.com/info/sw.nokia.com/id/e7c4ed92-a6d7-4cbc-8a20-a31b17616ad9/jsr-179-ri-1_0a-

bin(was1_1).zip.html, last accessed June 3
rd

, 2005

Oracle, Introduction to Location APIs, Oracle Corporation, 2004,

http://www.oracle.com/technology/sample_code/products/iaswe/iASWE-

LocationSample/doc/LocationAPI.html, last accessed June 3
rd

, 2005

Orange, Orange UK Location API. 2004.

http://www.orangepartner.com/site/enuk/tools/orange_network_apis/orangelocationapi/p_orange_uk_location_a

pi.jsp, last accessed June 3
rd

, 2005

Redknee, Synaxis-2200™: ELS Release 2.0 Client Interface Specification Document, Redknee Inc., 2002,

http://www.sourceo2.com/O2_Developers/Tools/Location_API.htm, last accessed June 3
rd

, 2005

Sun, J2ME Wireless Toolkit. 2004, Sun Microsystems. http://java.sun.com/products/j2mewtoolkit/index.html,

last accessed June 3
rd

, 2005

http://jcp.org/aboutJava/communityprocess/final/jsr179/index.html
http://www.codeguru.com/Cpp/Cpp/algorithms/general/article.php/c5115/
http://forum.nokia.com/info/sw.nokia.com/id/e7c4ed92-a6d7-4cbc-8a20-a31b17616ad9/jsr-179-ri-1_0a-bin(was1_1).zip.html
http://forum.nokia.com/info/sw.nokia.com/id/e7c4ed92-a6d7-4cbc-8a20-a31b17616ad9/jsr-179-ri-1_0a-bin(was1_1).zip.html
http://www.oracle.com/technology/sample_code/products/iaswe/iASWE-LocationSample/doc/LocationAPI.html
http://www.oracle.com/technology/sample_code/products/iaswe/iASWE-LocationSample/doc/LocationAPI.html
http://www.orangepartner.com/site/enuk/tools/orange_network_apis/orangelocationapi/p_orange_uk_location_api.jsp
http://www.orangepartner.com/site/enuk/tools/orange_network_apis/orangelocationapi/p_orange_uk_location_api.jsp
http://www.sourceo2.com/O2_Developers/Tools/Location_API.htm
http://java.sun.com/products/j2mewtoolkit/index.html

