
Software Engineering
for Modern Web
Applications:
Methodologies and
Technologies

Daniel M. Brandon
Christian Brothers University, USA

Hershey • New York
INFORMATION SCIENCE REFERENCE

Acquisitions Editor: Kristin Klinger
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Copy Editor: Brenda Leach
Typesetter: Carole Coulson
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2008 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Software engineering for modern Web applications : methodologies and technologies / Daniel M. Brandon, editor.

 p. cm.

 Summary: "This book presents current, effective software engineering methods for the design and development of modern Web-based
applications"--Provided by publisher.

 Includes bibliographical references and index.

 ISBN 978-1-59904-492-7 (hardcover) -- ISBN 978-1-59904-494-1 (ebook)

 1. Application software--Development. 2. Internet programming. 3. Web site development. 4. Software engineering. I. Brandon, Dan,
1946-

 QA76.76.A65.S6588 2008

 005.1--dc22

 2008008470

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

138

Chapter VIII
Evolving Web Application

Architectures:
From Model 2 to Web 2

Massey University, New Zealand

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

This chapter explores how Web application software architecture has evolved from the simple begin-
nings of static content, through dynamic content, to adaptive content and the integrated client-server
technologies of the Web 2.0. It reviews how various technologies and standards have developed in a
repeating cycle of innovation, which tends to fragment the Web environment, followed by standardisation,

and mobile Web clients on Web application architectures, and how server side processes can support
increasingly rich, diverse and interactive clients. It provides an overview of a server-side Java-based

-

reach of standards based development.

INTRODUCTION

Web applications grew out of the World Wide
Web in the 1990s, driven by the need, particularly
within e-commerce applications, for dynamic con-
tent. Early Web content, limited to static hypertext
markup language (HTML) pages, could not sup-
port on-line sales, transactions, personalisation,
or any of the other features of the Web that we

now take for granted. Subsequently, technologies

common gateway interface (CGI) scripts, active
server pages (ASPs) and Java Enterprise Edition
components like servlets and JavaServer Pages
(JSPs), transformed the landscape of the Web by
introducing the Web application, rather than just
the Web site.

 139

The cycle of innovation that saw the change
from static to dynamic content in the mid 1990s
has continued unabated. The post ‘dot com’ era
has seen Web application design move into a

rapid evolution of the Web client into the mobile,
cross-platform space, with mobile browser-hosted
technologies such as XHTML-MP (extensible

Alliance, a consortium of commercial interests in
the mobile communications industry), and micro

hand we see a change on the server side from the
‘walled garden’ Web application, providing only

-
ented Architectures that enable disparate services
from many sources to be integrated by exchanging
data using the extensible markup language (XML).

‘mashups’ (re-used, intermingled services) and the
programmable Web, aspects sometimes associ-
ated with the umbrella term the Web 2.0. These
changes raise questions about the future of the
Web application, for example, can we realistically
consider both a rich client and a mobile applica-
tion that will work across many different types
of device? How do extensible markup language
(XML) based technologies like Web services and
XSLT (extensible stylesheet language transfor-

How will the Web client evolve with the increas-
ing use of browser hosted applications and Ajax
(Asynchronous JavaScript and XML)? Much of
the discussion around the Web 2.0 focuses on the
social networking aspects of Web based applica-
tions, but there is an equally important discussion
to be had about the underlying architectures and
technologies of applications in the Web 2.0 era.
In this chapter we try to address some questions
about how Web application architecture contin-
ues to evolve, what forces come into play, and

may converge into new approaches. Illustrative
examples are provided using the Java Enterprise
Edition and supporting open source tools.

THE WEB FRAGMENTATION CYCLE

Web is what we might term the Web fragmenta-
tion cycle, which is the effect of technology driven

hand, we have seen that a particular Web technol-
ogy, for example a particular type of browser or
server side application, can drive Web evolution

early example of this was the introduction into
Netscape Navigator of HTML tags for presenta-
tion (Lie & Bos, 1999). Netscape’s development
of LiveScript (later JavaScript), and Microsoft’s

Web Access (Van Eaton, 2005) can also be seen
-

tion of Web access tools that increase the reach
of the Web across many different types of client.

phone network operators that joined in the WAP
(wireless access protocol) Forum in the late 1990s
to enable Web access via a wide range of mobile
devices by introducing the WAP browser and the
wireless markup language (WML).

is to narrow the accessibility of Web content
to those who have the appropriate technology.
While these innovations may increase qualities
such as usability and functionality for some,
they will exclude those who do not have the right
technology. In contrast, the effect of wider reach
is to encourage generic technologies for Web
access that enable more types of client to access
Web-based content, while potentially decreasing
usability and functionality due to the need to run
on a lowest common denominator platform. The
resolution to this dichotomy has traditionally
been the introduction of standards on a post hoc

140

basis, which set an industry-wide benchmark that
most products will ultimately comply with. These
standards enable the fragmentation caused by in-
novation to be (at least partially and temporarily)
resolved by integrating propriety innovation into
a common Web technology platform (Figure 1).

into a common standard, those technologies enjoy
broader implementation and wider reach, and the
Web ‘status quo’ moves forward.

Identifying the Web Fragmentation
Cycle in Practice

many overlapping cycles related to different Web
application technologies. Therefore the concept
of the Web status quo is somewhat misleading,
since there is never a stable point from which we
embark on a new cycle. However it is possible to

-
ous points in time and identify the two aspects

the level 1
was designed to introduce a standard, cross

platform, language independent view of how a
document should be accessed and manipulated,
but was partly based on the concept of the ‘level

-
ready implemented in the browsers of the time.
Similarly, at around the same time, the HTML

and lack of well-formedness, was engineered from
innovations already established by browsers in
common use. While the fragmentary, proprietary

others were attempting to maintain the original
concepts of separation of structure, content and
presentation that were originally intended for
Web-based documents, for example, by promoting
the standardisation and use of style sheets (Lie

cycles, that concept has gradually been reasserted,
with the development of the extensible hypertext
markup language (XHTML) and cascading style
sheets (CSS). Unlike HTML, XHTML does not
allow the arbitrary mixing of content, structure
and presentation, delegating presentation and, to
some extent, structural management of Web page
content (written in XHTML) to external style
sheets (written in CSS).

Figure 1. The Web fragmentation cycle

W eb ‘Status Quo’

Post H oc S tandards

Propr ie tary I nnovation
in One T ool Increasing R each

 141

The Emergence of Ajax

A recent example of the Web fragmentation cycle
has been the emphasis in browser hosted tools for
providing a richer client experience, including
Web service clients for mashup services and, in
particular, Ajax (asynchronous JavaScript and
XML). Ajax is not a particularly new concept,
following on as it does from a longer tradition of
client side processing. This began in the mid 1990s
with the introduction of JavaScript into Netscape
Navigator and Java applets into the HotJava
browser, and was followed by dynamic HTML
(DHTML) which combined HTML, style sheets
and scripts in a way that enabled documents to
be ‘animated’ (dynamically manipulated) in the
browser, with a view of the document that has
since been formalised by the W3Cs document
object model (Le Hégaret, Whitmer, & Wood,

Ajax and previous approaches is the concept of
the “one page Web application,” whereby page
content is updated asynchronously from the
server without the whole page being rebuilt. The
two main advantages of this approach are that it
enables a more interactive user experience, and

-
quired to update a page, though both of these are
dependent on careful design. An early example
of this approach was Google Suggest, which was

able to dynamically populate a search text box
with suggestions for search terms as characters
were typed into it, providing, of course, that the
browser was able to support it. Ajax itself is not a
technology but a label, applied by Garrett (2005),
to a way of building Web applications that uses
the XMLHttpRequest object within client side
scripts to seamlessly update Web pages. Garret
summarised Ajax as a combination of:

• Standards based presentation using XHTML
and CSS

• Dynamic display and interaction using the
document object model

• Data interchange and manipulation using
XML and extensible stylesheet language
transformations (XSLT)

• Asynchronous data retrieval using the
XMLHttpRequest

• JavaScript binding everything together

Figure 2 shows the general architecture of
Ajax based systems. The key to this architecture
is that the Ajax engine mediates between the
user interface and the server, processing on the
client where possible (using DHTML) and, where
necessary, sending asynchronous HTTP requests
and receiving XML data (or indeed data in any
other suitable format) that it renders in the browser

 B row ser C lien t

U ser In te rface

A jax E ng ine

S erve r S ide S ystem sJavaS crip t
C a ll H T M L +

C S S D a ta

W eb and /o r X M L S erve r

X M LH ttpR equest

X M L D a ta

142

by Garrett are not the only way to provide one-
page applications on the Web, since alternative
technologies like Flash can be used to similar
effect.

As a simple example of how Ajax might be
applied, we might consider how it could be used
to manage the submission of login data from a
Web page. In the usual client server interaction,
an HTML form will submit data to the server us-
ing a standard action that posts the data to a URI.
JavaScript may perform some surface validation

password length), but true validation (checking
the user’s ID and password against the security
domain) is done after the page is submitted to
the server. Here for example an HTML ‘form’
tag submits to a server side URI after invoking
a local validation function

<form action="/processlogin" method="post"
onsubmit="return validateLoginData(this);">

The server response will then be to generate
a different client page, either a regenerated login

page (if there are errors) or the next logical page
in the business process. In contrast an Ajax ap-
proach might be to trigger a local Ajax function
by an event such as a button being pressed (or

submitting a form to a server side URI.

< i n p u t n a m e = " s u b m i t » t y p e = " b u t t o n "
onclick="ajaxLogin();" value=»Submit" />

The local Ajax function will use an XML-
HttpRequest to communicate asynchronously
with the server, and trigger a function that pro-
cesses the return value and interacts with the
current page to update it appropriately.

…
xhrequest = getXMLHttpRequest();
…
xhrequest.onreadystatechange = processLogin;
xhrequest.open("post", url, true);
xhrequest.send(null);
…

W eb P age

W eb P ageS erve r s ide w eb
app lica tion

W eb P age

A jax O ne P age D esign

S tandard M u lti-P age D esign

Manipulate current page

A jax F unction

Log in fo rm

Log in fo rm

S erve r s ide w eb
app lica tion

 143

function processLogin()
…
// process the server response data and manipulate

the current page

Figure 3 shows how the two approaches differ

the “one page Web.”

in the contexts in which they work, the aspect of
fragmentation that Ajax and similar technolo-
gies bring is that they rely on the programming
platform within the Web browser, excluding
those Web clients that do not support these
technologies. At the same time there has been
a separate move towards broader Web access

reliance on client side JavaScript or similar tools
that are needed to support Ajax. Indeed there is

“software above the level of a single device”

no reason why these two patterns should be mu-
tually exclusive, but the Ajax approach to a rich
user experience, with the current level of mobile
browser technology, is potentially fragmentary.
Whilst some rudimentary Ajax implementations
may be possible with JavaScript enabled mobile

interactive, desktop style Ajax application cannot
currently be accessed from mobile devices.

Mobile Standardisation: The .mobi
Domain

At the same time as the desktop browser was being
increasingly leveraged to develop a rich, interac-
tive user experience based on asynchronous server
requests, there was a move by the mobile phone
network operators and handset manufacturers in

the Web by introducing the .mobi top level domain

in 2006. The intention of this new domain was
to provide a standard way for users to access the
mobile Internet by guaranteeing that a site with a
.mobi extension was designed for mobile device
access. The primary mechanism for this was to
use XHTML-MP (extensible hypertext mark-up

WAP Forum’s wireless mark-up language (WML)
as the standard page mark-up for .mobi domains

Mobile Alliance). This approach, however, has
come in for some severe criticism. Tim Berners
Lee, the ‘father’ of the World Wide Web, com-
mented that:

This domain will have a drastically detrimental
effect on the Web. By partitioning the HTTP infor-
mation space into parts designed for access from

not for such access, an essential property of the
Web is destroyed (Berners Lee, 2004).

However, over time we can expect that this
separation between mobile and non-mobile Web

standards, will minimise the differences between
desktop and mobile content delivery. Further de-
velopment of mobile browsers will begin to provide
Ajax or alternative rich client functionality on
more types of mobile device. We can also expect
the technologies that underlie the .mobi domain,
such as XHTML-MP, to evolve over time and
support such an increase in functionality. After a
period dominated by fragmented tools and tech-
niques, we can expect a common set of standards
to emerge that will give consistency across the
Web, regardless of browser, rendering specialised
mobile content unnecessary. Figure 4 shows how
Ajax and specialised mobile content can be seen to

two trends should resolve into device independent
rich content.

144

W ide R each D ynam ic
C ontent

D evice In dependent
R ich C ontent

Ajax C ontent Specia lised m obile
content

Listing 1. The innerHTML property and DOM methods compared

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>innerHTML and the DOM</title>
 </head>
 <body>
 <div id="section1"></div>
 <div id="section2"></div>
 <script type="text/javascript">

 // add an element containing text using innerHTML
 document.getElementById("section1").innerHTML =
 "<p id='para1'>Section 1 uses innerHTML</p>";

 // add an element containing text using the DOM
 var para2 = document.createElement("p");
 para2.setAttribute("id","para2");
 para2.appendChild(document.createTextNode
 ("Section 2 uses the DOM"));
 document.getElementById("section2").appendChild(para2);

 </script>
 </body>
</html>

 145

Innovations That Do Not Become
Standards

Although we have so far presented the fragmen-
tation cycle as a repeating pattern of innovation
and reach being resolved by standardisation, this

all innovations are neatly resolved by the devel-

this process does not appear to be satisfactorily
resolved is the common use and implementation
of the innerHTML property within many browser

by the World Wide Web Consortium (W3C). Use
of this property is driven largely by its simplic-
ity, since it makes it easy for Web developers
to insert dynamic content into a text node of a
Web based document. This makes it very useful

the use of this property are primarily that it can
be easily misused, since content, structure and
presentation aspects of the document can become
muddled together with client side scripts when
content is manipulated in this way. Unfortunately
the alternative approach, to use the standard

complex, compounded by variations in the way

different browsers. The simple example in List-
ing 1 shows an XHTML page that includes a
script (written in JavaScript) that adds an element
containing text using the innerHTML property,
and adds a similar element using the methods of

is the code itself longer, but the performance of
the innerHTML approach is much faster in most
situations (Koch, 2006)

easily resolved. Therefore we should acknowledge
again that the simplistic view of the fragmentation

cycle that sees a clean merging of innovations and
standards will not always apply.

WEB 1.0 ARCHITECTURE

So far in this chapter we have focused largely
on the evolving client side components of Web
application architecture. However it is on the
server that the major Web application processes
actually take place. Therefore, we also need to
consider how Web application architectures have
evolved in terms of server side components and
interactions. Before exploring how current in-
novations and standards may affect the future

review some of the main architectural aspects of
established practice. In the spirit of the level 0

architectures as “the Web 1.0.” In this type of
architecture, there are some standard patterns that
are commonly used and integrated into popular
Java Web application frameworks such as Struts
and JavaServer Faces. These patterns include the
Model 2 architecture (Seshadri, 1999), which is
loosely based on the Model View Controller pat-
tern (Buschmann et al., 1996) and the Template
View pattern (Fowler, 2003).

The Server Page Template Model

Established Web application technologies that
support dynamic content, like JavaServer Pages
(JSPs) and Microsoft’s Active Server Pages,
use a relatively simple model of a layered Web
based architecture, whereby server side applica-
tion execution can be integrated into presenta-
tional mark-up. Dynamic content is based on
the transformation of database content into Web
based pages, and form based input into database
updates. Architectural patterns for this type of

the Model View Controller pattern, like the JSP

146

Model 2 architecture (Seshadri, 1999). Here, a
server side component at the controller layer, the
Front Controller (Fowler, 2003), is responsible for
interpreting client requests, delegating to other
server side components in the model layer to
provide the necessary data objects, and ensuring
that the thread of control is ultimately forwarded
to a component suitable for rendering the client
response. This component is usually a server
page, which is able to embed dynamic content into
presentational markup using special tags. Fowler

(2003) characterises this as the Template View ap-
proach to page generation, where the server page
provides the presentation template and dynamic

preferably using XHTML compliant tags. The
code example in Listing 2 shows a JSP that uses
the template view approach. It is a document in
XML format that contains a combination of stan-
dard mark-up tags, using XHTML (the template,

to the Java server side environment, that generate

Listing 2. An example of the Template View pattern using a JavaServer Page and the JSTL
<?xml version="1.0"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 doctype-public="-//W3C//DTD XHTML 1.1//EN"
 doctype-system=" http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd "
 version="2.1">

 <jsp:useBean id="choice" class="com.webhomecover.beans.QuoteChoice"
scope="session" />
 <jsp:useBean id="contents" class="com.webhomecover.beans.ContentsDetails"
scope="session" />
 <jsp:useBean id="buildings" class="com.webhomecover.beans.BuildingsDetails"
scope="session" />

 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <link href="webhomecover.css" rel="stylesheet"
 type="text/css" />
 <title>WebHomeCover Insurance Quote</title>
 </head>
 <body>
 <h1>Here is your insurance quote from WebHomeCover</h1>
 <c:if test="${choice.buildings}">
 <h2>Your Buildings Quote:</h2>
 <jsp:getProperty name="buildings"
 property="formattedInsuranceQuote"/>
 </c:if>
 <c:if test="${choice.contents}">
 <h2>Your Contents Quote:</h2>
 <jsp:getProperty name="contents"
 property="formattedInsuranceQuote"/>
 </c:if>
 <form action="welcome.jsp" method="get">
 <input type="submit" value=
 "Thanks for the quote, now take me back to the home page" />
 </form>
 </body>
 </html>
</jsp:root>

 147

dynamic content. These tags are a combination
of standard JSP tags (‘jsp:root,’ ‘jsp:useBean,’
‘jsp:getProperty’) and the ‘if’ tag from the JSP
Standard Tag Library (JSTL).

Behind the view/controller layer, the map-
ping between the data store and the model is the
responsibility of
interact with the higher levels of the system via

most real world cases the data store is a relational
database, requiring some
mapping, enabling the structured query language
(SQL) to be used to read and write persistent data.

query results can be embedded into server pages
using appropriate tag libraries.

Figure 5 illustrates the basic ‘Web 1.0’ archi-
tecture. Initial routing of all hypertext transfer
protocol (HTTP) requests from Web clients is
handled by the front controller component that
receives all the requests, parses their parameters
and delegates to the appropriate object model layer
components via command objects (1). There are a
number of frameworks that encapsulate this design
pattern, including Struts and JavaServer Faces. In
both cases, the front controller component is a Java
servlet. Any interaction between the model and

which interacts with the underlying data store (3).

by the object model layer and/or embedded into
server page components using tag libraries (4).
These server page components can then gener-
ate a dynamic response (5). In “traditional” Web
applications, that response has typically been in
the form of HTML.

The XML Transformation Model

More recently, XML (extensible markup language)
based technologies have become popular in Web
application architectures, in no small part due to
the limitations of HTML, which is purely a page
mark-up syntax and cannot be used to represent
data at any level of abstraction, whereas XML can
be used to represent semi-structured data that is
not restricted to page mark-up (Abiteboul, Bun-
eman, & Suciu, 2000). Certain principles underlie
the use of XML in a Web application. Its role is
essentially to provide services that cannot be sup-
ported using more traditional approaches to Web
applications based on representing content directly
in HTML. There are four broad categories where
XML provides such services (Bosak, 1997):

• Applications that require the Web client to
mediate between two or more heterogeneous

S erve r P age
T ag

L ib ra ry

S erv le t

request

S QL

O /R D A O

U pda te / que ry

D atabas e

D T O

con ten tresponse

1
2

3
45

O
bj

ec
t M

od
el

Front Controller

Data Transfer Object

Data Access Object

Model 2

Template View

Co
m

m
an

d
O

bj
ec

ts

148

Figure 6. The Transform View pattern, where a source document is transformed into a client page using

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"
href="transform2.xsl"?>
<policy-claims>
 <company-domain>
 http://www.WebHomeCover.com
 </company-domain>
 <contents-image>
 contents.gif
 </contents-image>
 <buildings-image>
 buildings.gif
 </buildings-image>
 <policy type="contents">
 <policy-holder>A. Liu</policy-holder>
 <claims>
 <claim>
 <year>2002</year>
 <details>Stolen TV</details>
 </claim>
 </claims>
 </policy>
Etc…

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml"
 doctype-public="-//W3C//DTD XHTML 1.1//EN"
 doctype-system="
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd "/>
 <xsl:template match="/">
 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en">
 <head>
 <title>Insurance Claims</title>
 </head>
 <body>
 <h1>Claimants and policy types</h1>
 <xsl:for-each select="policy-claims/policy">
 <p class="{@type}">
 Name: <xsl:value-of select="policy-holder"/>
 <xsl:choose>
 etc…

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en">
<head>
<title>Insurance Claims</title>
</head>
<body>
<h1>Claimants and policy types</h1>
<p class="contents">
 Name: A. Liu

</p>
etc…

From XML

Via XSLT

To
XHTML

• Applications that attempt to distribute a

• Applications that require the Web client to
present different views of the same data to

• Applications in which intelligent Web agents
attempt to tailor information discovery to
the needs of individual users.

Meeting these requirements means that a
Web application that uses XML needs a more
complex server side architecture than the simple
template model, and data has to be represented in,
and translated between, multiple formats, which
may include XML, object model and database
level representation. Whereas the template view
pattern assumes a component based plugging-in
of object model components into a server page

 149

template, the XML based model requires some
kind of transformation to take place from data,
taken from some source and represented by XML,
into mark-up that can be interpreted by the client.
Fowler (2003) characterises this approach as the
Transform View model where, instead of using a
server page to embed object model components
into a page template, an extensible stylesheet
language (XSL) processor is needed to transform
an XML document into a generated client page.
In order to make this transformation, the XSL
processor applies an XSL transformation (XSLT)

to be transformed.
Figure 6 shows how an XML document is

transformed by an XSL Transformation into an
XHTML client page. This transformation can
take place either on the client or the server, de-
pending on whether the client is able to process
the transformation (most desk top browsers are
able to do this).

 The main problem with executing transfor-
mations on the client, even assuming the client
is able to perform those transformations, is that
they will provide static content, since the assign-
ment of the transforming style sheet will be hard
coded into the XML document. Alternatively,
we would have to rely on the client providing

perform the dynamic transformation. In contrast,
a transformation executed on the server can be
applied dynamically and reliably, independent
of the client. Listing 3 shows an example of how
such transformations can be executed on the server
using tags from the JSP Standard Tag Library.

XML library applies an XSL transformation style
sheet to an XML document.

between the template and transform approaches
in shown in Figure 7. In the template view, the
server page integrates components from the object
model into a mark-up based template. The page
template is embedded in the server page itself.
In the transform approach the XSL processor
integrates elements from XML documents into
a mark-up based transformation, with the page
template embedded in the transformation style
sheet. If the transformation is performed on the
server, the server page simply triggers the trans-
formation process.

XML in Web Applications

Bosak’s (1997) four roles of XML can be sup-
ported in various ways by the transform model.
Mediation between heterogeneous databases can
be seen from more than one perspective. In some

Listing 3. The Transform View pattern implemented on the server using the JSP Standard Tag Library

<?xml version="1.0"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:x="http://java.sun.com/jsp/jstl/xml"
 version="2.0">

 <jsp:directive.page contentType="text/html"/>
 <jsp:output omit-xml-declaration="true" />

 <c:import url="policies.xsl" var="stylesheet" />
 <c:import url="policies.xml" var="xmldocument" />
 <x:transform doc="${xmldocument}" xslt="${stylesheet}" />

</jsp:root>

150

cases, XML Web services can be used to integrate
the various data sources of a single organisation
or collaborating group of organisations. In this
sense XML can be seen as the natural succes-
sor to more traditional forms of electronic data
interchange (EDI). In other cases, such as those
included in the patterns of the Web 2.0, there is
the concept of specialised databases being the core
item of value in a system, with the opportunity
to reuse these databases in new combinations of
services. In this type of scenario the databases
in question may be distributed over a wide range
of providers, with no formal relationship or set
of contracts between them. Here, the XML Web
services are in the public domain. From any of
these perspectives, raw XML data may be the
way of communicating between systems, but
transformations are necessary to apply queries

There are various ways that XML can be

the server to the client, but again some aspect
of transformation is essential. XML documents
provide a presentation neutral way of represent-
ing the underlying content of an application, but
the typical role of the Web client is to render that
data in an appropriate way. Tools for this type
of transformation, such as XSLT, are therefore
an essential component of an XML-centric Web
application architecture. This is what underlies
the concept of the transform model, since XSLT
is able to express how one XML document may
be transformed into another document, which
may be XML or may use a different syntax such
as XHTML. The way that processing can be

sophistication from the simple separation of XML
data, XSL transformations and CSS (cascading
style sheets, used to style the presentation of a
document) to Ajax applications. In the former case,

Figure 7. The Template View and Transform View patterns compared

D ata Source Server Page
Eng ine

Page T empl ate

C lient Page

D ata S ource XSL P rocessor

XSLT Stylesheet

C lient PageXM L D ocum ent

Tem pla te
View

Transform
View

Object Model

 151

we rely on the ability of the browser to download,
cache, and process by transformation and styling,
XML documents. Since the same transformations
and style sheets can be used with multiple XML
documents from similar data sources (i.e., related
but different queries across the same data source)
all that is required of the server is to send the
XML documents to the client for processing. In
the latter case, various Ajax tools can be used to
develop rich client processes based on JavaScript
and asynchronous XML messaging. This is a
more complex approach, since instead of relying
on the browser’s native ability to process XSLT,
we are relying on a JavaScript application to sup-
port client side processing and parsing of XML

presentational style sheet processing to small
devices using this kind of markup, not all mobile
clients are able to manipulate XML documents
using XSL Transformations or by using client
side scripting languages like JavaScript. However,
many small devices can support the use of Java
Micro Edition to manipulate XML documents
on the client, using small footprint parsers such
as kXML. Therefore an Ajax-style approach is
possible even in the absence of JavaScript.

-
ing necessary for XML transformations onto the
client, the server can take responsibility for en-
abling the Web client to present different views of

ways that we can apply XSL transformations of
XML data in a Web application is to provide dif-
ferent transformations for different types of client
device. For example, the same content, represented
in XML, could be transformed into XHTML for
desktop browsers, wireless markup language
(WML) for ‘legacy’ mobile phones, XHTML-MP
for more recent mobile phone browsers, and so
on. The same techniques can be use for person-
alisation or customisation of the content itself,
targeting the user as well as the device

Finally, agents can utilise XML because it
provides metadata about Web-based content. This

aspect of XML is what supports the concept of the
-

tion about Web-based information sources on the
part of Web applications. Although discussion
of the Semantic Web is beyond the scope of this
chapter, XML and XML Schema are important
foundation technologies that support the higher
level aspects of the Semantic Web technology
stack such as the resource description framework
(Hendler, 2001).

The Limitations of the Transform
Model

Whilst transformations, used directly, can have
certain advantages such as the ability to leverage
the common abilities of browsers to perform XSL
transformations on the client, on their own they
have a number of drawbacks. First, the syntax of
the XSL transformation is complex, and can be

-
ply-templates” approach is used to transform the
XML documents using pattern matching. Second,
using a transformation directly cannot easily be
integrated with other server side processes, even
if the transformations are actually executed on
the server rather than the client. The advantage
of the XSLT approach is that a relatively small set
of transformations can be used to manage a large
number of XML documents in a Web applica-

In contrast, using a tag-based template approach

mark-up and programmatic logic. Passani &
Transatti (2002) argue that XSL Transformations
are a very poor approach to providing adaptive
mark-up for different devices, because they mean
writing separate transforms for each type of cli-
ent. In contrast, template based tools such as the
wireless abstraction library (WALL) enable us
to encapsulate different page generation behind
processing tags (Passani & Transatti, 2002). It is
possible, however to use parts of XSL combined

152

Rather than transforming documents in a single
process, we can combine partial transformations
with template based mark-up. This can help us

template model. However the key is to combine
both transformations and templates into a single
server page to ensure adequate performance. It
is technically possible to generate a server page,
marked up using device adaptive tags, from

Figure 8. Combining transform and template views

Listing 4. Combining the Template View and Transform View approaches in a JSP

XSL P rocessor

Page T empl ateD a ta Source

Server Page
Engine

XSLT / XPath

C lient PageXM L D ocum ent

<?xml version="1.0"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:x="http://java.sun.com/jsp/jstl/xml"
 version="2.1">
 <jsp:directive.page contentType="text/html"/>
 <jsp:output omit-xml-declaration="false"
 doctype-root-element="html"
 doctype-public="-//W3C//DTD XHTML 1.1//EN"
 doctype-system="http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" />

 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <link href="webhomecover.css" rel="stylesheet"
 type="text/css" />
 <title>WebHomeCover Insurance Policies</title>
 </head>
 <body>
 <div>
 <!— main page presentational content here,
 including XPath expressions, e.g.
 —>
 <c:import url="./policies.xml" var="xmldocument"/>
 <x:parse doc="${xmldocument}" var="xml"/>
 <x:out select="$xml/policies/policy/policy-holder"/>

 </div>
 </body>
 </html>
</jsp:root>

 153

a transformation, and then run that generated
page through the server page engine. However

The alterative approach is to integrate partial

the XML data, within the same server page as
the adaptive mark-up. This means a single pass
through the server page (Figure 8).

The code extract in Listing 4 shows the basic
principles of this approach. The template view
provides the main structure of the page and gener-
ates the XHTML tags that build the presentation.
Within this page, however, XPath expressions are
applied to an XML document to insert dynamic

transform and mixed template and transform ap-
proaches is that the responsibility for the XHTML
mark-up is in the XSLT document in the transform

approach, but in the server page in the combined
template/transform approach.

WEB 2.0 GENERATION
APPLICATION ARCHITECTURE

In the previous sections we introduced some of the
architectural features of Web applications that may
use either template or transform approaches, or a
combination of both. In this section we describe a
Web 2.0 generation architecture for adaptive Web
applications that leverages XML as a data repre-
sentation format within an adaptive architecture,
integrates service oriented aspects, and combines
both template and transform elements. Perhaps the
most important feature of this architecture is the
introduction of an XML data layer that integrates

S erve r P age
T ag

L ib ra ry

F ron t C on tro lle r

request

S QL

O/R D A O

U pda te / que ry

D atabas e

O /X M L
D T O

con ten tresponse

1a 3b

456a

E xte rna l
w eb se rv ice

c lien t

E xte rna l
w eb se rv ice

se rve r

X S L P rocessor S ty le
S hee t X P a th

S ty le
S hee t

X S LT /
X P a th

X M L

1b 6brequest response

XM
L

D
at

a
La

ye
r

U pda te / que ry
2

url

X M L
W eb

serv ice

3a

X M L

X H T M L

O
bj

ec
t M

od
el

154

disparate data sinks and sources into a cohesive
XML management process at the same level as
the object model. This enables a system to man-
age requests and responses in a consistent way,
regardless of whether the client request is for a
Web service or presentation mark-up, and whether
our data sources are local databases or remote
Web services. An outline of the architecture and
its core processes is shown in Figure 9.

In this architecture, client requests to a front
controller component may come either from
presentation oriented devices (1a) or external
Web service clients (1b). The request is delegated
to a joint XML data and object model layer (2).
Depending on the requirements of the request,
queries delegated via the XML data layer may
either retrieve XML content from one or more
external services running on other Web servers
(3a), generate XML content from a local database
via suitable queries (3b) or perhaps combine
multiple data sources. Where content is based on
external Web services, content will already be in
XML format. Where content is held locally in a
database that is not natively XML, some kind of
transformation will be required between relational
and XML data. Rather than implementing such a
direct transformation, which would provide only
XML to the controller layer, it is probably wise
to maintain the -
tern, but add XML generation capabilities to the

be used both as objects in their own right within
the object model of the underlying entities in
the system and as sources of XML documents.
A layer of object/relational data access objects

from relational data to object model and create

documents may be generated from a model that
is created from a single database query, since
multiple object level queries can be used against

from the XML data layer (5) is transformed via
an XSL process utilizing XPath queries to build

parts of a document. These XML path queries
should be performed via a server page using tag
libraries that integrate both XML data retrieval
and adaptive markup to ensure encapsulation and

transferred to the device in the generated mark-up
format for processing by the client. This may be a
device oriented mark-up (6a) or a Web service (6b).

mark-up and act as end points for Web services. It
should be noted that services may take different
forms. For example, a server side component may
provide XML messaging service for Ajax clients
by using the mechanism described above, whereby
program components generate XML documents
and stream these to JavaScript components on the
client. However Web services may take a more
heavyweight form, using standards such as Web
services description language (WSDL), simple
object access protocol (
description, discovery and integration (UDDI).
In this case, generation of XML from program-
ming components will typically be done via tool
support to generate the necessary XML docu-
ments, stubs and skeletons to enable client/server
interoperability. The current generation of Java
Web service tools are based on the Java API for
XML Web services (JAX-WS).

This type of XML centric architecture has a

both external Web services and local components.
Second, we can provide adaptivity that integrates
both client device mark-up and Web service end-
points. From a business perspective it provides
maximum leverage of external services and APIs
while gaining maximum potential distribution
across all possible client types. Encapsulation of
data access and transformation should provide

For example, separating out concerns between
XML, object models and the database, rather
than directly generating XML from the database,
can assist in the reuse of legacy data sources and
provide added security through additional layer-

 155

ing. In terms of the Web fragmentation cycle, the
architecture is based on common XML, Java and
SQL standards while integrating some aspects of
innovative Web 2.0 service based and cross-device
architectures.

Integrating Java and XML

So far we have introduced a number of features
of Web application architecture relating to either
XML or Java, but indicated that a Web applica-
tion architecture need to be able to support data
objects that can convert to and from Java and
XML. In this section we discuss some aspects of
how Java and XML can be integrated, including
some standard tools. In a Java based architecture,

them to be used via tag libraries in JSPs, and be
manipulated by the JSP Expression Language.

These beans provide both an object model to
organise the requested set of data and a way of
generating XML documents from one or more
beans. This is particularly useful where a client
page will include data from multiple tables that
have some kind of associative relationship, realised
in the application as a related graph of objects.
Generating XML from JavaBeans can be done
using frameworks or custom code. Geary (2001),
for example, provides some guidance on how to
implement JavaBeans that can generate XML. In
cases where the XML content encapsulates nested
elements from multiple domain components, the
beans will form a composite pattern (Gamma et al.,
1995) with the composite objects organising sub
elements and the leaf objects generating element
content. Listing 5 shows a simple implementation
of this pattern, where the class that implements
the ‘getXmlElement’ method (representing an
insurance policy) is associated with a collection

public String getXmlElement(boolean graph)
 {
 StringBuffer element = new StringBuffer();
element.append
("<policy policy-number=\"" + getPolicyNumber() + "\">");
element.append
("<start-date>" + getFormattedDate() + "</start-date>");
element.append
("<annual-premium>" + getAnnualPremium() +
"</annual-premium>");
element.append
("<number-of-claims>" + claims.size() +
"</number-of-claims>");
 element.append("<paid-up>" + getPaidUp() + "</paid-up>");
 if(graph)
 {
 element.append("<claims>");
 Iterator<Claim> claimIter = claims.iterator();
 while(claimIter.hasNext())
 {
 Claim claim = claimIter.next();
 element.append(claim.getXmlElement());
 }
 element.append("</claims>");
 }
 element.append("</policy>");
 return element.toString();
 }

156

of ‘Claim’ objects that generate their own XML
content via a call to a polymorphic ‘getXmlEle-
ment’ method. Each of these methods generates
a fragment of a larger XML document.

 The link between the JavaBeans and the data-
base will depend on the nature of the database and
the transactional requirements of the persistence
layer. In some cases a simple manual mapping
using JDBC may be adequate, but it is likely that
frameworks implementing standards such as the
Java Persistence API will be required for indus-
trial strength persistence. How the JavaBeans
interact with the XML layer will also depend on
the requirements of the application. As we have
described, manual solutions are possible, but it
may be more appropriate to use tools such as
the open source XMLBeans (Apache Software
Foundation, 2006) or Java XML binding (JAXB)
which is integrated into the standard Java plat-
form from version 6 onwards. The choice here
will often depend on whether the application is
mainly driven by an object model or by XML
documents, since frameworks like XMLBeans
and JAXB depend on the data model being
derived from XML Schemas, and Java objects
being generated subservient to that XML data
model. Another important consideration is the
generation of Java objects from XML documents.

This can be done manually using the Java API
for XML processing (JAXP) but is perhaps bet-
ter performed by tools like JAXB, particularly
since more recent versions of JAXB, unlike the
original implementation, can convert both from
XML to Java and from Java to XML. The partial
code example in Listing 6 shows how JAXB can
be used to generate XML documents from Java
objects via a ‘Marshaller,’ in this case a collection
of ‘Policies’ objects. The collection of Policies is

by the JAXB framework.

the JavaBeans layer, XML processing should
be performed via JSPs using tags from libraries
such as the JSP standard tag library (JSTL), which
includes a dedicated sub-library for XML process-
ing. However there are a number of other XML
processing tag libraries available in Java that may
be used instead. Listing 7 shows the JSTL being
used for a simple XSL transformation—similar to
listing 3—but this time, not using a static XML
document. A JavaBean is used to generate an
XML document which is transformed by a style
sheet using JSTL tags. In this code example we
assume that the getXmlDocument method is re-
sponsible for marshalling the various components
of a complete XML document, in contrast to the

ObjectFactory policiesFactory = new ObjectFactory();
Policies policies = policiesFactory.createPolicies();
JAXBContext ctx = JAXBContext.newInstance(Policies.class);
…
Marshaller m = ctx.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
m.marshal(policies, System.out);
 try
 {
 OutputStream os = new FileOutputStream (new File("newpolicies.xml"));
 m.marshal(policies, os);
 }
 catch(Exception e)
 {
 e.printStackTrace();

}

 157

getXmlElement method we saw in Listing 5, which
generated a fragment of a larger document. Using
the JSP Expression Language, ‘claim.xmlDocu-
ment’ refers to the getXmlDocument method of
a JavaBean stored in the scope of the Web page
under the lookup name ‘claim.’

Adapting to Client Devices

multiple types of client browsers, the server side
page generation has to be able to adapt to different

If an XML transform layer is in place, the under-
lying content can easily be adapted, but how it is
actually adapted is another question. Fortunately,
there are a number of Java-based technologies that
can assist us in adapting server-side content to
the client device without manually interrogating

wireless
abstraction library (WALL), a JSP tag library
that builds on the
(WURFL) (Passani & Trasatti, 2002). WURFL is
an XML database that is able to map user agent
information to the capabilities of the originating

mark-up. JSP pages based on the template view

model, using WALL syntax, can be integrated
with XML elements using the transform view
model by applying tags (such as those from the
JSTL) that enable XPath queries to be applied to
an XML document and the results included in
a server page. During the page processing, the
WALL tags will be turned into the appropriate
mark-up for the client device while the XPath
elements will provide the content from the source
XML document. Listing 8 shows part of a server
page that incorporates WALL tags to generate
adaptive mark-up, along with XPath queries using
the JSTL. The key difference between the XML
processing in Listing 7 and that in Listing 8 is
that the former uses the transform view pattern,
whereas the latter uses the combined template and
transform view pattern outlined in Figure 8.

By using the WALL device aware library we
are able to provide a single server page for many
different types of device. However we might in
addition choose to provide our own customised
transform for particular types of device. For
example, a transform could be used that would
take advantage of the rich client technologies
available on the desktop. Many Web 2.0 applica-
tions leverage Ajax and Flash, though there are
many other possibilities. At the least, we might
apply a cascading style sheet (CSS) to manage

<?xml version="1.0"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:x="http://java.sun.com/jsp/jstl/xml"
 version="2.0">

 <jsp:directive.page contentType="text/html"/>
 <jsp:output omit-xml-declaration="true" />

 <c:import url="claims.xsl" var="stylesheet" />
 <x:transform doc="${claim.xmlDocument}" xslt="${stylesheet}"/>

</jsp:root>

158

the presentation in the browser. Where the client
is a service end point, and the system provides
content as a Web service, direct XSLT transforms
can be used, since they would not be generating
presentation mark-up but XML documents suit-
able for Web service use.

CONCLUSION

In this chapter we have described how Web appli-
cations have evolved from static content, through
dynamic content based on a server page template
model, to contemporary architectures that rely
heavily on the transformation of XML documents
and increasingly complex client side applica-
tions. We have discussed this evolution within a
model that shows how Web technologies tend to

broader reach as a result of standardisation. To
develop Web applications in this context we need
to be aware both of new technological develop-
ments and also how generic standards support is
evolving. For example we may wish to develop

Ajax applications but also deliver cross platform
applications to both desktop and mobile clients.
To be innovative while broadening reach as much
as possible it is necessary both to work within

across platforms, whether it be increasing support
for certain technologies on multiple platforms
(e.g., JavaScript support in mobile browsers) or
tools that adapt themselves to different clients
(e.g., tag libraries for adaptive mark-up.) To sup-
port the integration of different approaches and

leverages patterns, layers and XML centric data
management is necessary. In this chapter we have
described a reference architecture that is based
on Java, XML and server side tag libraries that
supports the transformation of local or service
based content into client-adaptive output formats,
using a combination of the template view and
transform view design patterns. This architecture
takes into account both current thinking on the
technologies of Web-based applications and the
encapsulation and reuse of standard libraries.

<wall:xmlpidtd />
<wall:head>
 <wall:title enforce_title="true">Claim Display</wall:title>
</wall:head>
 <wall:body>
 <wall:block>
 <wall:br />
 <jsp:useBean id="claims" class="webapp.classes.ClaimsBean" />
 <x:parse doc="${claims.xmlDocument}" var="xml"/>
 <x:forEach select="$xml/claims/claim">
 Claim Description: <x:out select="description"/>
 <wall:br/>
 Claim amount: $<x:out select="amount"/>
 <wall:br/>
 </x:forEach>
 </wall:block>
 </wall:body>
</wall:document>

 159

Building Web applications based on this architec-
ture should enable developers to gain maximum

on proprietary tools.

REFERENCES

Abiteboul, S., Buneman, P., & Suciu, D. (2000).
Data on the Web - From relations to semistruc-

. San Francisco: Morgan
Kaufmann.

Alur, D. Crupi, J., & Malks, D. (2003). Core J2EE
patterns: Best practices and design strategies,
2nd Edition. Upper Saddle River, NJ: Sun Mi-
crosystems Press / Prentice Hall.

Apache Software Foundation. (2006). Apache
. Retrieved on July, 2007, from http://

xmlbeans.apache.org/index.html

Berners Lee, T. (2004). New top level domains
.mobi and .xxx considered harmful. Retrieved
on January, 2007, from http://www.w3.org/De-
signIssues/TLD

Bosak, J. (1997).
Web. Retrieved on July, 2007, from http://www.
ibiblio.org/pub/sun-info/standards/xml/why/xm-
lapps.htm

Buschmann, F., Meunier, R., Rohnert, H., Som-
merlad, P., & Stal, M. (1996). Pattern-oriented
software architecture: A system of patterns.
Chichester: Wiley.

Fowler, M. (2003). Patterns of enterprise applica-
tion architecture. Boston: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. 1995. Design patterns: Elements of reusable

. Reading, MA.: Ad-
dison-Wesley.

Garrett, J. (2005).
applications. Retrieved on July, 2007, from
http://www.adaptivepath.com/publications/es-
says/archives/000385.php

Geary, D. (2001). Advanced JavaServer pages.
Upper Saddle River, NJ: Sun Microsystems Press
/ Prentice Hall.

Hendler, J. (2001). Agents and the Semantic Web.
IEEE Intelligent Systems, 16(2), 30-37.

Koch, P. (2006). . Berkeley,
CA: New Riders.

Le Hégaret, P., Whitmer, R., & Wood, L. (2006).
. Retrieved on

-
view

Lie, H. W., & Bos, B. (1999). Cascading style
sheets: Designing for the Web, 2nd edition. Harlow,
England: Addison Wesley Longman.

What is Web 2.0: Design
patterns and business models for the next gene-
ration of software. Retrieved on July, 2007, from
http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html

Passani, L., & Trasatti, A. (2002). WURFL. Re-
-

forge.net/

Seshadri, G. (1999). Understanding JavaServer
pages model 2 architecture: Exploring the MVC
design pattern. JavaWorld, December.

Van Eaton, J. (2005).
catalyst for Web evolution. Retrieved on July,
2007, from http://msexchangeteam.com/ar-
chive/2005/06/21/406646.aspx

