
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2007 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

1-1-2007

Evolving Architectural Patterns For Web
Applications
David Parsons
Massey University, d.p.parsons@massey.ac.nz

Follow this and additional works at: http://aisel.aisnet.org/pacis2007

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2007 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Parsons, David, "Evolving Architectural Patterns For Web Applications" (2007). PACIS 2007 Proceedings. Paper 56.
http://aisel.aisnet.org/pacis2007/56

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2007%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2007?utm_source=aisel.aisnet.org%2Fpacis2007%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2007%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2007%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2007?utm_source=aisel.aisnet.org%2Fpacis2007%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2007/56?utm_source=aisel.aisnet.org%2Fpacis2007%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org>

 120

104. Evolving Architectural Patterns For Web Applications

David Parsons

Massey University, Auckland, New Zealand

d.p.parsons@massey.ac.nz

Abstract

Web application architectural component relationships have evolved over the last decade or

so to the point where they have become well established both as common design patterns and

embedded in software frameworks. However with the increasing adoption of Web 2.0

technologies and Ajax based web applications, new patterns are starting to emerge. These

patterns have yet to become well established in the literature, though a number of new

frameworks are beginning to appear. In this paper we review the core patterns of traditional

web application architectures, as described in the literature. We then move on to collect some

new patterns that have begun to emerge and integrate them into a larger architectural view

of how contemporary web applications are evolving. Where it is necessary to illustrate these

patterns within a specific web technology, we use components from the Java Enterprise

Edition.

Keywords: Web application, design pattern, software architecture, The Web 2.0, Ajax

1. Introduction
Design patterns are reusable elements of software. Their common level of abstraction is a

component that solves a general design problem in a particular context, but does not span an

entire application or subsystem (Gamma et al, 1995, Buschmann et al, 1996). In contrast,

architectural patterns are shared understandings of the major components of a system‟s

design (Fowler, 2003). The relationship between them is that an architecture can incorporate

many patterns. For example the JUnit framework has an architecture that utilises a large

number of design patterns (Gamma, 1998). In the web application context, the design patterns

that are in common use have evolved slowly along with the technologies. For example, the

first Java server side component was the servlet in 1996. This was followed by the JavaServer

Page (JSP) in 1999. The first JSP specification included two suggested small scale

architectural patterns, JSP Model 1 (where a single component processes both the HTTP

request and response) and JSP model 2 (where one component processes the request and

delegates to another to process the response). Although these were removed from later

specifications into supporting documents (e.g. Mahmoud 2003), developers began to build

Model 2 architectures with servlets, developing the front controller servlet pattern that we see

used by popular web application frameworks such as Struts and JavaServer Faces. Thus we

find that patterns emerge from practice in ways that are not necessarily foreseen when the

technology is first introduced. Currently, we are at a stage where a large number of

technologies that have been maturing slowly for some time (JavaScript, the Document Object

Model, XML services) are beginning to be used in ways that show emerging patterns and

architectures. We begin this paper by reviewing the core patterns that are used in many web

application architectures, and describe a reference architecture built on these patterns. We

then explore some emerging Web 2.0 and Ajax design patterns that have begun to be

described in the literature. We conclude by looking at how these patterns may be integrated

into existing architectures to provide an overall architectural pattern for contemporary web

application development.

 121

2. Common Web Application Design Patterns
The architectures of web applications and many of their supporting frameworks have become

well established since web application components began to appear in the latter half of the

1990s. These architectures are combinations of well understood design patterns that work

together to provide architectural frameworks. On the server side, the Model 2 architecture has

become widely applied as the view/controller pair of a web-based version of the model view

controller architecture, its essential pattern comprising a separation of concerns between the

components processing the HTTP request, accessing the underlying model and building the

HTTP response (Seshadri, 1999). Behind this view controller layer the model is likely to use

patterns such as data transfer / access object. The controller itself may be based on either the

page controller or front controller patterns (Fowler 2003). However with frameworks, the

latter is much more likely. Another important pattern is the view helper, which may to some

extent be seen to be in conflict with the front controller as it appears to be based on a Model 1

architecture. However this is only the case if we take the patterns as complete and separate

units. Aspects of both patterns can easily be combined if the view helper is seen in a Model 2

context. Further patterns can be applied to the view component itself. A common approach is

to use the template view, (Fowler, 2003) which is the one expressed by the view helper

pattern where the view page contains the template structure for the page and the embedded

components (the „value beans‟) are plugged into that structure to give dynamic content.

However an alternative way of building the view is to use the transform view pattern where

the page is generated by transforming a (dynamically created) XML document. The two may

be combined by plugging partial transforms that generate parts of a document, rather than a

full page, into a template view. Figure 1 shows how these various patterns fit into a web

application architecture. Although this blending of architectural and design patterns is

common in practice, we rarely find them combined together in this type of representation. It

is important, however, to begin our analysis with this kind of overview because each

interaction between an architecture and a pattern, or between one pattern and another, has

implications for the functionality and cohesion of the overall application. Selecting between a

template or transform view, for example, has major implications for the way the system

works even though both can be encompassed within a Model 2 architecture.

Server Page

Tag

Library

Servlet

request

SQL

O/R DAO

Update / query

Database

DTO

contentresponse

1

2

3

45

O
b

je
c
t
M

o
d

e
l

Front Controller

View Helper

Data Access Object

Model 2

Template / transform view

Figure 1: Common design patterns within a web application architecture

 122

On the client side, patterns are less well defined. For a totally thin client, which only renders

markup, the only applicable patterns are those that relate to page sequencing, for example

„wizard‟ workflows where a series of form pages are sequenced one after the other. Many of

the other published patterns that relate to thin client architectures focus mostly on usability

patterns (e.g. Graham 2003) rather than software architectures.

3. The Emergence of the Web 2.0 and Ajax
The established web application patterns and architectures discussed in the previous section

are still widely used. However the recent emergence of the Web 2.0 and Ajax (Asynchronous

JavaScript and XML), which Booch (2006) suggests marks the move between 5
th

 generation

and 6
th

 generation web applications, have led to further developments in the architectures of

web applications to encompass these new approaches to web development, and new patterns

are beginning to emerge as a result. Rich Internet Application Frameworks are also beginning

to appear (Shan and Hua, 2006).

3.1 The Web 2.0

The Web 2.0 is a term that has become widely used since the first Web 2.0 Conference in

2004. Although it might be categorized as an umbrella marketing term rather than a specific

technology or architecture, some authors, notably O‟Reilly (2005), have given it some

concrete specifications through a set of published principles, practices and patterns. Many

publications that discuss the Web 2.0 focus on rich user interfaces, in particular the use of

Ajax, but the ideas of the Web 2.0 go beyond Ajax to include a wide range of ideas about

how modern web applications should be developed. The key ideas underlying the Web 2.0

may perhaps be summarized as:

• The web as a software platform

• Service oriented architectures

• User and contributor communities

3.2 The web as a software platform

In the past, the software platform that applications were built on was a particular computer

operating system, for example Microsoft Windows or Linux. In contrast Web applications are

able to span multiple operating systems because web browsers can render the same content

regardless of the original system from which the page was downloaded. Further, „smart‟

clients can be integrated into applications that run over the web. For example, to download

music we might use a PC to connect to a web server and also connect a mobile device to the

PC, all using a single application. In this type of situation, the software platform that the

overall application is running on is the Web, not just a single device.

3.3 Service oriented architectures

In the early days of the Web, the focus was on the applications that were being used. For

example the „browser wars‟, primarily between Netscape and Microsoft in the mid 1990s,

were about which application would be used to access the Web. More recently, the focus has

been more on the underlying content available via the Web, rather than the specific

applications that might be used. This content is made available using various forms of web

service, which are data sources made available over the web using the eXtensible Markup

Language (XML). One simple example of a web service is RSS (an acronym that has

multiple roots, Really Simple Syndication, Rich Site Summary and RDF Site Summary),

which uses XML to supply feeds of frequently updated information such as news and weather.

 123

3.4 User and contributor communities

Traditional software construction is about building self-contained applications for a particular

purpose. In many Web 2.0 applications, instead of this type of central control, applications

are about a community of users who participate in the application itself. A good example of

this is Wikipedia, the on-line encyclopedia where anyone can create or edit entries. Of course

opening up a web application to contributions from the user community is not appropriate for

every system, but certain aspects of the approach to software development can be

incorporated into many different types of web application.

3.4 Ajax

Asynchronous JavaScript and XML (Ajax) is a term coined by Garret (2005). At its simplest,

Ajax makes it possible to update parts of a web page with data read from a server without

having to refresh the whole page, making the user experience more like using a traditional

desktop application rather than surfing a web site. Ajax itself is not a technology but rather a

grouping of complementary technologies. Garret summarized Ajax as a combination of:

 Standards based presentation using XHTML and CSS

 Dynamic display and interaction using the Document Object Model (DOM)

 Data interchange and manipulation using XML and eXtensible Stylesheet Language

Transformations (XSLT)

 Asynchronous data retrieval using the XMLHttpRequest

 JavaScript binding everything together

Figure 2 shows the general architecture of Ajax based systems. The key to this architecture is

that the Ajax engine mediates between the user interface and the server, processing on the

client where possible (using Dynamic HTML) and, where necessary, sending asynchronous

HTTP requests and receiving XML data (or indeed data in any other suitable format) that it

renders in the browser via the DOM.

Browser Client

User Interface

Ajax Engine

Server Side Systems

JavaScript Call HTML + CSS Data

Web and/or XML Server

XMLHttpRequest

XML Data

Figure 2: Ajax architecture (adapted from Garrett (2005))

Equally importantly this processing can take place asynchronously. This means that the user

does not have to wait for the server to respond in order to continue interacting with the

application. Instead, the application is able to continue serving the user while at the same

time handling the server response as and when it arrives. User activity in the browser

continues even while the Ajax engine is submitting XMLHttpRequests to the server and

waiting for responses. The Ajax engine is responsible for handling events associated with

getting back the server response but the user does not have to wait for it. Ajax applications do

not have to be asynchronous, however. In some cases it might be appropriate to wait for the

server‟s response before continuing with the current process.

 124

Two major benefits that have been claimed for Ajax applications are improvements in both

system and user performance, supported by a reduction in the interruptions of page reloading

and a reduction in network traffic, while the major penalty appear to be in system complexity

(Paulson 2005). Although published research is so far limited, there have been some attempts

to measure Ajax performance, notably Smullen and Smullen (2006), indicating that the

reduction in required bandwidth can indeed improve performance measured in terms of

browser response times. Research on user performance has not so far been published, though

Atterer and Schmidt (2007) discuss a tool that would support this type of analysis. In this

paper we focus on the possibility of managing architectural complexity by understanding and

integrating some emerging Ajax design patterns.

4 Mining New Web Application Patterns and Architectures
Since the emergence of the Web 2.0 and Ajax, new patterns and frameworks have emerged

that challenge aspects of the architectures that we have grown familiar with. However due to

the fragmentary nature of Ajax, which is an architectural idea rather than technology, and the

many other aspects of the Web 2.0, there is little concrete information with which to identify

the underlying patterns. For example, O‟Reilly‟s Web 2.0 patterns (O‟Reilly, 2005) are in

fact no more then heuristics at best, marketing slogans at worst. At no point do they include

any architectural guidelines. Garret‟s (2005) original Ajax article provided us with some

more guidance about Ajax architecture, but did not attempt to specify patterns. Underlying

these two aspects is a „bifurcation‟ between the move towards the rich client technologies on

the one hand, and service oriented architectures on the other (Booch 2006). The conflict

between these two may not always be obvious, but can lead to some interesting problems, For

example, it is problematic to build an Ajax client (rich client) for an RSS feed (service)

because of the security restrictions of browsers. At best, you have to negotiate a warning

message, at worst, the browser will refuse to connect to a third party server.

Fortunately some pattern based work is beginning to emerge that can help us to identify some

useful architectural components that may be reused across different web application

implementations. To some extent, Ajax has exhibited the characteristics of what Booch refers

to as „accidental architecture‟. Importantly, he says that “by naming these accidental

architectures, we again raise the level of abstraction by which we can describe and reason

about a system” (Booch 2006, p.10). At present, we are beginning to see a number of Ajax

patterns emerge but few architectural aspects. The Wiki based Ajax patterns page, for

example, includes (at the time of writing) around 60 small scale pattern descriptions, but no

patterns under the heading of „Ajax Architecture‟ (Mahemoff 2007). In the following section

we make some initial efforts to mine the literature for some patterns that could be regarded as

being applicable at the architectural level.

4.1 Auto-completion architecture

MacLanahan (2006) provides a sequence diagram representation of a conceptual

implementation of auto completion, one of the most evident features of an Ajax

implementation. In this pattern the JavaScript component creates and initializes the

XMLHttpRequest object which connects to a servlet. The response is, of course, indicated as

asynchronous and the final result is to update the Document Object Model (DOM). He

further describes the server side implementation of an autocomplete process on the server

using JavaServer Faces as an example framework. Though this is a framework specific

example, the underlying patterns can be generalized to any Ajax application. There is a server

side listener applied to each component, and further server side components that relate

specifically to the client side field that is being used for data entry.

 125

4.2 Delta management architecture

Mesbah and van Deusen (2006) provide a useful description of the level of data interaction

between client and server in an Ajax implementation, as part of their SPIAR architectural

style. They define the „delta encoder / decoder‟ component on the server, that is responsible

for identifying the delta between the previous and current state of the client, and ensuring that

the minimum amount of data transfer takes place. This is an important feature of Ajax

implementations, since one of the key points about Ajax is that we do not need to refresh an

entire page, much of which is duplicated, when all that has changed is one small part of the

content.

4.3 Client side buffering

Mahemoff (2007) lists a series of Ajax patterns that he describes as „architectural‟, though

they are really small architectural components. These include local event-handling, which

can be supported by a local cache, and predictive download. To further improve the client

server efficiency, he proposes various alternative strategies such as submission throttling or

explicit submission. All of these architectural concepts can be merged at a higher level of

abstraction into a component of the Ajax engine that manages interaction by ensuring that the

number of XMLHttpRequests made to the server is minimized. We will refer to this general

component as the XMLHttpRequest buffer.

Figure 3 shows how the three general architectural Ajax patterns might be integrated into a

Web application architecture. The XMLHttpRequest Buffer pattern becomes integrated with

the Ajax engine on the client to minimize data transfer to the server. On the server side, the

auto completion components are chained before the delta encoder/decoder in order to

minimize data transfer back to the client.

Browser Client

User Interface

Ajax Engine

Server

JavaScript Call HTML + CSS Data

XML Data

Input

Component

Listener

Autocomplete

component

handler

Delta encoder /

decoder

XMLHttpRequest buffer

Ajax Servlet

Figure 3: Ajax architectural patterns

 126

5. Summary and future work
This paper describes an ongoing effort to identify emerging architectural patterns in the

context of contemporary Web 2.0 applications using Ajax. As with all pattern mining activity

the intention is to identify best practice from the work of others and re-present it in such a

way that it can be successfully reused. Given the current stage of development of Ajax tools

and frameworks, there is much more work to be done in this area, but we have identified a

number of useful architectural patterns and outlined how they might be integrated into an

overall reference architecture for web application development. However there is much more

work to be done in mining a rich set of patterns that can provide a more complete guide to the

web software architect that may help to address the complexity inherent in an Ajax-based

approach whilst still delivering the demonstrable performance benefits.

References
Atterer, R. and Schmidt, A. “Tracking the Interaction of Users with AJAX Applications for

Usability Testing,” Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, San Jose, USA, 2007, pp. 1347-1350.

Booch, G. “The Accidental Architecture,” IEEE Software (23:3), May/June 2006, pp. 9-11.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. Pattern-Oriented

Software Architecture: A System of Patterns, Wiley, Chichester, 1996.

Fowler, M. Patterns of Enterprise Application Architecture, Addison-Wesley, Boston, 2003.

Gamma, E. “Junit: a Cook’s Tour”, Retrieved January, 2007, from

http://junit.sourceforge.net/doc/cookstour/cookstour.htm, 1998

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, Reading, Mass., 1995.

Garrett, J. “Ajax: A New Approach to Web Applications,” Retrieved January, 2007, from

http://www.adaptivepath.com/publications/essays/archives/000385.php, 2005.

Graham, I. A Pattern Language for Web Usability, Addison-Wesley, London, 2003.

McClanahan, C. “The State of Web Frameworks,” Retrieved March, 2007 from.

http://kr.sun.com/developers/PDFs/preso/Craig_JCO2006.pdf , 2006

Mahemoff, M. “Ajax Patterns: Design Patterns for Ajax Usability,” Retrieved March 2007

from http://softwareas.com/ajax-patterns, 2007

Mahmoud, Q. “Servlets and JSP Pages Best Practices,” Sun Developer Network, 2003,

Retrieved January, 2007 from

http://java.sun.com/developer/technicalArticles/javaserverpages/servlets_jsp/

Mesbah A. and van Deursen, A. “An Architectural Style for Ajax’”, Delft University

Software Engineering Research Group Technical Paper, 2006.

O'Reilly, T. “What Is Web 2.0: Design Patterns and Business Models for the Next Generation

of Software,” O’Reilly Network, Retrieved January, 2007, from

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html, 2005.

Paulson, L. “Building Rich Web Applications with Ajax,” IEEE Computer (38:10), 2005,

pp.14-17.

Seshadri, G. “Understanding JavaServer Pages Model 2 Architecture: Exploring the MVC

Design Pattern,” JavaWorld, December 1999.

Shan, T. and Hua, W. “Taxonomy of Java Web Application Frameworks,” Proceedings of

IEEE International Conference on e-Business Engineering (ICBE’06), Shanghai, China,

2006, pp.378-385.

Smullen C. and Smullen S. “Modelling AJAX Application Performance,” Proceedings of

Web Technologies Applications and Services, J.Yao (ed.), Calgary, Canada, 2006.

	Evolving Architectural Patterns For Web Applications
	Association for Information Systems
	AIS Electronic Library (AISeL)
	1-1-2007

	Evolving Architectural Patterns For Web Applications
	David Parsons
	Recommended Citation

	241

