
Creating game-like activities in agile software

engineering education

David Parsons

Massey University

Auckland, New Zealand

Abstract—Game-like activities are often seen as valuable

teaching tools, because they foster engagement and can also

encourage teamwork and self-directed learning. The agile

software engineering community was an early adopter of game-

like activities in its mission to educate software developers about

various aspects of agile methods. In addition to the potential

benefits of participating in game-like learning activities, the

creative and analytical process of designing and facilitating such

activities can also be a powerful learning tool. In this article we

describe how the design and testing of agile learning games has

been used as a means to increase students’ understanding of agile

methods in a higher education context, as well as giving them an

opportunity to develop their creative, organizational and

analytical skills.

Keywords—gamification; game-like activity; agile methods;

creativity; learning

I. INTRODUCTION – GAMES AND GAME-LIKE ACTIVITIES

Game-like activities are a well-established approach to
teaching and learning in many domains, including software
engineering. In recent years, the concept of „gamification‟ (in
its broadest sense) has spread across many aspects of software
engineering, not just education. The definition of a game, and
the process of gamification, is somewhat subjective, though
there must be some set of rules, and goals, and players
(individual or team), and possibly some physical or virtual
artifacts (cards, dice, whiteboards etc.) to support the activity.
Games are intended to be entertaining and are frequently
competitive, but may also be cooperative team games. Some
game-like activities might only include some of these
characteristics, blurring the boundaries of what we might
choose to call a game. The „games‟ discussed in this article are
really just game-like activities, with a serious purpose. Serious
games are intended to teach some knowledge or skill, but
hopefully remain entertaining in order to engage the
participants.

II. GAME-LIKE ACTIVITIES FOR AGILE SOFTWARE

DEVELOPERS

Game-like activities for software developers employing
agile methods fall into three general categories. First, some
game-like aspects have been introduced into the actual
processes of agile software engineering. Their role is to take
advantage of certain perceived benefits of gaming and apply
them to some activities in the agile development process.
Second, there are game-like activities based on creating

software that are not targeted at developing a product but on
developing software craftsmanship. Third, there are activities
that are much closer to games, and do not include the creation
of software, but are nonetheless intended to teach certain
aspects of agile development. In the following sections, some
examples of each type of activity are outlined.

A. Game-like activities in the software development process

Using game-like activities to assist the processes of
software development is not a new idea. For example the Class
Responsibility Collaboration exercise, which pre-dates agile
methods but is often used in conjunction with them, has a
number of game-like characteristics, including role play and
physical interaction [1]. Another activity grounded in practical
software development is the Planning Game, which is part of
XP [2] and focuses on high level release planning. The goal is
not to create accurate estimates but rather to determine the
overall project scope. Approaching this task as a game-like
activity is intended to take away some of the emotional stress
of project planning. The „players‟ are the business stakeholders
and the developers, and the „pieces‟ in the game are the story
cards. There are three main „moves‟ in the game; Write story,
estimate story and make commitment. The game-like
characteristics are primarily based on the terminology used
(players, pieces and moves) rather than the actual activity.

Like the Planning Game, Planning Poker [3] is a way of
using game-like activities to perform some of the tasks of agile
planning. One significant difference is that in Planning Poker
there are additional „pieces‟, the „cards‟ used to estimate
stories. The aim of Planning Poker is to create estimates in a
short time and involve the whole team. Planning Poker can be
made more effective by the use of pre-printed cards. Not only
does it save the time of manually writing the estimates, but
these cards only have a subset of possible estimated days. The
actual values on the cards vary from deck to deck. Cohn [4]
suggests either 1, 2, 3, 5, and 8 (Fibonacci sequence) or 1, 2, 4,
and 8 days, but there are various other options that can be used.
Other game-like artifacts that can be used for this activity
include poker chips [5]. Another variation is to use on an on-
line version for distributed teams, making the activity
something akin to an on-line role playing game [6].

B. Game-like activities for software craftsmanship

The game-like activities described above are incorporated
into the normal business process of developing software. A
second category of game-like activity is that of software

craftsmanship, where code is written not as part of a production
process but as a separate activity. To make this activity
interesting and challenging, game-like features are often
incorporated.

Software developers wishing to develop their craft often
use Code Katas [7], short programming exercises that can be
coded in many different ways to help the developer practice
their skills. From these, Coding Dojos have developed, where
groups of people work together on katas [8]. This has some
features of a game-like activity in that a Coding Dojo is
organized like a spectator sport, where members of a group
observe and comment on a pair of developers working on a
problem.

In a further development of these ideas, a coderetreat
explores a single kata with the full involvement of all
participants and within a game-like structure where there are
various challenges, and time limits, and team „play‟ [9].

C. Game-like actvities that teach about agile methods

The examples we have described so far are activities for
software developers that are focused on the craft of software
development but incorporate some game-like features. The
third category we will investigate is game-like activities where
no software is created at all. Rather, games are played that help
to explain key features of agile software development. In these
games, the players typically act as developers, stakeholders,
testers or some other kind of role relevant to their tasks, thus
they tend to be live action role playing games. In line with the
usual structure of software development organizations or
groups, the players are often put into teams rather than working
alone. The rules are derived from the software processes being
addressed in the game, whatever they may be. These games are
often used as a process miniature, a way of understanding how
a software development process works, condensed into a much
shorter timescale [10]. In order to create a miniature version of
a process in a game, activities other than real software
development are usually used, such as drawing pictures or
building things out of Lego

TM
, so they can be performed in

short time scales. In recent years, the number of games being
used in the agile development community has grown
enormously, to the extent that there is now a conference series
dedicated to agile games [11]. In this section we provide a brief
introduction to some of the many game-like activities that have
been used to teach aspects of agile software development.

1) The XP Game
The XP Game [12] is a development of the Planning Game,

and is primarily about story estimation and release planning.
Unlike the Planning Game, it is intended to allow developers
and business people to switch from their normal roles,
participating in teams guided by a coach. In the game there are
three phases. In the first phase („estimation‟) all the team
members play the role of developers. In the second („make a
plan‟) everyone is a customer. In the third phase
(„implementation‟) everyone returns to the developer role.

The practical activities performed in the game have nothing
to do with software development, but the tasks help to develop
relevant skills in estimation. They include doing things with
playing cards, balloons, mental arithmetic etc.

2) The Extreme Hour
Like the XP game, the Extreme Hour involves performing

some activities in various roles, and estimating and prioritizing
stories [13]. However instead of comparing many different
tasks it focuses on a single project deliverable; building a better
mousetrap. User stories are not pre-supplied but written by
stakeholders, and deliverables are drawn by developers, in
pairs, on a whiteboard. A tracker is responsible for copying the
features as they are drawn, so when they are erased from the
whiteboard there is a „repository‟ of completed features. In
addition to the developer and stakeholder roles, there is a
quality assurance role for writing acceptance tests. „Unit tests‟
are performed by developers, and are failed if they cannot
understand what other developers have drawn. Overall, the
approach of the Extreme Hour is to try to model more of the
overall process of XP than the XP Game does, rather than
focusing specifically on estimation and planning. Thus they
can be seen to be complementary.

3) The Lego Games
Using Lego for agile games has been a well-developed

theme, including „XP: the LEGO brick road‟ [14] „XP Lego
Game‟ [15], „Agile (Lego) Hour‟ [16] and the „Lego lean
game‟ [17], amongst others. In these games, Lego is used to
construct vehicles, animals, buildings etc. within some kind of
agile process miniature. The fact that the use of Lego has
remained popular as these games have evolved suggests that it
offers some compelling features for these kinds of activities.
Lubke and Schneider [16] outline a number of reasons why
they started to use Lego (instead of drawings) in their variation
of the XP Hour, including the fact that bricks can more easily
be reorganized and combined into modules than drawings, and
can also better mimic the reuse of pre-existing components.

4) The Agile technique Hour
The Agile Technique Hour was designed to focus on how

specific techniques integrate together in agile development.
The main task in the activity is to design a human powered
vehicle. Teams are allocated a set of user stories describing
required features of such a vehicle. The overall design is
created by overlaying features drawn on A4 transparencies,
with each transparency being used to depict exactly one
feature. Teams develop these features concurrently, and new
user stories are introduced within each iteration. The teams
consist of; stakeholders, developers and acceptance testers. The
various techniques are introduced in a controlled way in three
20-minute iterations. At the end of the game the winning team
is the one that has the most complete vehicle.

III. CREATING AN AGILE GAME AS A LEARNING ACTIVITY

The main issue addressed in this paper is how we might

best utilize the concept of game-like activities in teaching

agile software engineering. In an academic course we may

find it difficult to provide opportunities for students to engage

in game-like activities while working in real world software

projects, but special events such as coderetreats or role playing

games like those described here can be useful teaching aids.

However, although playing agile games is a useful learning

activity, higher level skills are better developed by creative

actions [18]. Thus the class activity described in this paper

was based on the idea that creating an agile game, rather than

just playing one, is a challenging and insightful process that

can benefit the learner in many ways. To exercise this idea a

group of students learned about agile games as part of a post

graduate course in agile software engineering, and

experienced both the XP Game and the Agile Technique Hour.

They were then asked to create and demonstrate their own

agile games.

For this task, the students were asked to develop a game-

like activity that could help to teach a group of „players‟ about

one aspect of agile methods. An important constraint in the

task was that they were not to replicate the style of the games

they had experienced, which covered many aspects of agile

development, but instead they had to confine themselves to

one specific aspect.

They were given the following definition of „game-like‟:

“To be ‘game-like’, an activity should be fun to do, include
some level of competition (individual or team) have clear goals
and some way of checking if those goals have been reached”

They were required to create a suitable „user manual‟ that
would enable someone to run the activity. If any materials were
required, they had to specify what these were (e.g. pack of
cards, pencil and paper, Lego bricks etc.) They also had to
provide these materials as part of their practical tests of the
activities.

The task appeared to provide a high level of challenge to
the creative thinking of the students. A good deal of formative
assessment took place where the students would come to the
class with their initial ideas for feedback. It challenged their
self-reflection and critical thinking skills. They found it easy to
think up game-like activities, but much harder to justify in what
way these activities would help others learn about a specific
aspect of agile methods. It also challenged their planning. A
number of students came with ideas that would be extremely
difficult to implement in practice. They had to be frequently
reminded that the proposed game would have to be tested in
class, and that this was not just a theoretical exercise but had
the goal of creating a viable product that could be used by
others. Thus it seems that the exercise as whole addressed skills
essential to agile practice; planning, testing, iterative
development, meeting stakeholder requirements and „doing the
simplest thing that could possibly work‟

The following four examples give some impression of the
range of the more successful games that were developed by
members of the class. „Successful‟ in this context means that
the games turned out to be realistic to deliver in class, met the
requirements of focusing on a single aspect of agile
development, and gained positive feedback from participants.
These four games each aimed to teach a single aspect of agile
methods; pair programming, standup meetings, team strategy
and refactoring.

A. Assembling Pens

The aim of this game is to explore pair programming by
setting a task and experiencing the pairing roles of driver and
navigator. The materials are a set of 10 different ball point

pens, of the type that can easily be dismantled and re-
assembled. The „test‟ is whether the pens have been
successfully assembled, and if so, whether they actually work,
for example a pen may have been assembled with the wrong
spring and not retract properly. The exploration of pair
programing is in manipulating the relative roles of driver and
navigator, and applying additional rules such as silent pairing.
A variation for the game is whether or not to provide a photo of
the assembled pens. This might be regarded as an explicit
statement of requirements. However, pairing is claimed to have
more value on tasks that are not well understood at the
beginning [19]. Thus providing a photo is a fall back if the task
proves too difficult.

B. Scrumhancer

This game explores stand up meetings as practiced in
Scrum. In the game, participants work in teams of three
developers plus one Scrum Master. Each developer is given a
specific task to do. These tasks involve solving problems such
as crosswords, Sudoku puzzles or Boggle word searches. Each
team member works for two minutes on their individual task,
and then a standup meeting is convened. In a variation on the
usual Scrum feedback, each developer reports on; what puzzle
they are working on and how much of it they have they solved
so far, how much more of the same puzzle they expect to solve
in the next cycle, and what difficulties they are facing. In the
standup meeting, the team members must come up with a
strategy for the next cycle. They can choose to continue with
their previous puzzle, or two or three developers can combine
their efforts in solving one puzzle, or they can choose to
exchange puzzles amongst themselves in order to solve them
all by the end of the third cycle. The Scrum Master must ensure
that the chosen strategy is being implemented by their team in
the subsequent cycle. An observer assesses each team on
criteria such as whether meetings were correctly time
constrained, focused and constructive. The observer‟s final
scores over three iterations are used to decide the winning
team.

C. Agile Poker

This game is about the value of working in pairs and teams.
Its purpose is to demonstrate how working with others can
produce better decisions than doing things individually, and
how team meetings can improve focus and problem solving.
The game is based around packs of standard playing cards. One
deck is used by each „team‟ of four developers, a further deck
by the game controller. The task for the team is to make a
poker hand by adding 4 cards (1 card each) to the first card
drawn by the game controller (each of the four team members
will hold 13 cards from their deck). The 5 cards together make
a poker hand which is scored increasingly in the order: pair <
two pairs < straight < full house < four of a kind < straight
flush. Note that not all possible poker hands are valid in the
game. The game takes 3 iterations to complete. In the first
iteration the team members work individually. They have to
think about what cards their team members might play, but
have no way of knowing. In the second iteration they work in
silent pairs. Each pair can share knowledge of their cards with
their partner, but without communicating verbally. Before the
final iteration they are allow to speak together in a team

meeting to work out a group strategy. Although they cannot
swap cards, the ability to plan their strategies with others, first
in pairs, and then as a team, should help them appreciate the
value of collaboration in problem solving.

D. An Agile Story

This game addresses the issue of incorporating a set of
requirements into an iteration, and dealing with changing
requirements in subsequent iterations by refactoring. It is based
on teams of developers writing stories from a set of
requirements based on supplied characters, actions, and
locations. In the first iteration, each team must write a story
based around two randomly chosen character cards, two
randomly chosen action cards and a randomly chosen location.
For example they may be given the characters of „fisherman‟
and „lawyer‟, the actions of „buying shoes‟ and „throwing a
Frisbee‟ at the location of a „market‟. In each subsequent
iteration, an additional character, action and location are added
to the requirements. This means that the story must be
refactored to take account of the new requirements. At the end,
the „customer‟ judges the best story. The main challenge in the
game is to adapt to changing requirements by refactoring the
story in each iteration so that its overall design quality is
maintained.

IV. SUMMARY AND CONCLUSIONS

Table I provides a brief summary of some of the main
features of the four games described in the previous section. In
each case the learning focus and materials are indicated and,
important for a game-like activity, the goals and means of
checking them are shown. Perhaps the main point to be taken
from this table is that creating an agile game as an assessment
activity provides a very broad canvas on which the students can
work, enabling them to exercise their creative thinking skills as
well as their analytical skills.

TABLE I. SUMMARY OF 4 AGILE GAMES

* Not the same as the „story cards‟ often used in agile development

The activities described in this paper were originally
designed for teaching a class, not as a research activity. The
aim of this paper is therefore not to report on the outcomes of a
research project but to describe some experiences with an
approach to teaching aspects of agile methods that also

addresses higher level skills. The value of the activity seemed
to be at several levels. First, it required the students to apply
their analytical skills in identifying the core concepts of one or
more aspects of agile software engineering. Second, it enabled
them to exercise their creative thinking skills in designing a
game-like activity. Third, it required them to apply their
organizational skills in running their own games. Further, the
students also gained from participating in the tests of the
activities, enabling them to reflect on their own game designs
and engage in peer review.

ACKNOWLEDGMENT

The author thanks the Agile Software Engineering students
whose work is referenced in this article; Gautam Atmakuri,
Mridu Gupta, Dylan McLeod and Agus Leonardi Sugianto.

REFERENCES

[1] K. Beck and W. Cunningham, “A laboratory for teaching object-oriented
thinking”. SIGPLAN Notices Volume 24, Number 10, October 1989

[2] K. Beck, Extreme Programming Explained: Embracing Change. 1st
edition. Boston: Addison-Wesley, 1999.

[3] J. Grenning, Planning Poker or How to avoid analysis paralysis while
release planning, [Online]. Available: http://sewiki.iai.uni-
bonn.de/_media/teaching/labs/xp/2005a/doc.planningpoker-v1.pdf
2002.

[4] M. Cohn, Agile estimating and planning Addison-Wesley, 2005A.
Cockburn, Agile Software Development. Addison Wesley, 2002.

[5] J. Yip. “Hands-on release planning with poker chips”. In 14th
Conference on Pattern Languages of Programs (PLOP '07). 2007.

[6] Mountain Goat Software, Play. Estimate. Plan. [Online]. Available:
http://www.planningpoker.com/ 2013.

[7] Thomas, D. Code kata. [Online]. Available:
http://codekata.pragprog.com/2007/01/code_kata_backg.html#more
2013

[8] Emrich, M. (2013). Behaviour Driven Development with JavaScript.
Developer Press.

[9] CodeRetreat Community Network. [Online]. Available:
http://coderetreat.org/ 2013

[10] A. Cockburn, Agile Software Development. Addison Wesley, 2002.

[11] Agile Games 2012, [Online]. Available:
http://www.agilegames2012.com/index.php

[12] V. Peeters and P. Van Cauwenberghe, The XP Game. [Online].
Available: http://www.xp.be/xpgame.html, 2006.

[13] Extreme Hour Wiki. http://c2.com/xp/ExtremeHour.html. 2005

[14] T. Mackinnon, O. Bye and P. Simmons, Extreme Programming: the
LEGO brick road, [Online]. Available:
http://www.spaconference.org/ot2000/programme/122_Mackinnon_Tim
.htm 2000

[15] S. Newman, D. North, amd M. Hill, The Lego XP Game, [Online].
Available: http://www.magpiebrain.com/wp-
content/uploads/2006/07/lego_xp_game_submitted.ppt, 2005

[16] D. Lübke and K. Schneider, “Agile Hour: Teaching XP skills to students
and IT professionals in product focused software process improvement”.
Lecture Notes in Computer Science, Volume 3547/2005, 517-529, 2005.

[17] D. Sato and F. Trindade, “The Lego Lean Game” in Agile Processes in
Software Engineering and Extreme Programming, Lecture Notes in
Business Information Processing, Volume 31, Part 4, 192-193, 2009.

[18] L. Anderson and D. Krathwohl (eds.) A taxonomy for learning, teaching,
and assessing: A revision of Bloom's taxonomy of educational
objectives. New York: Longman, 2001.

[19] K. Lui, “Pair programming productivity: Novice-novice vs. expert-
expert”. International Journal of Human-Computer Studies 64 (9), 2006

Agile Game

Game Features

Learning

focus
Material Goals

Goal

checking

Assembling

Pens

Pair

programming
Pens

Cooperate to

assemble
components

Functional

testing

Scrumhancer
Standup

meetings
Puzzles

Gain value

from meetings

Observer

scorecard

Agile Poker
Team

strategy
Playing
cards

Learn to

develop team

strategy

Poker
scoring

Agile Story Refactoring
„Story‟

cards *

Maintain
quality while

embracing
change

„Customer‟

as judge

http://sewiki.iai.uni-bonn.de/_media/teaching/labs/xp/2005a/doc.planningpoker-v1.pdf
http://sewiki.iai.uni-bonn.de/_media/teaching/labs/xp/2005a/doc.planningpoker-v1.pdf
http://www.planningpoker.com/
http://codekata.pragprog.com/2007/01/code_kata_backg.html#more
http://coderetreat.org/
http://www.agilegames2012.com/index.php
http://www.xp.be/xpgame.html
http://c2.com/xp/ExtremeHour.html
http://www.spaconference.org/ot2000/programme/122_Mackinnon_Tim.htm
http://www.spaconference.org/ot2000/programme/122_Mackinnon_Tim.htm
http://www.magpiebrain.com/wp-content/uploads/2006/07/lego_xp_game_submitted.ppt
http://www.magpiebrain.com/wp-content/uploads/2006/07/lego_xp_game_submitted.ppt

