
17
th

 Australasian Conference on Information Systems Mobile Learning Web Services

6-8 Dec 2006, Adelaide Parsons

A Web Services Architecture for Rich Content Mobile Learning Clients

Dr. David Parsons

Joshua Newnham

Massey University

Institute of Information and Mathematical Sciences

Massey University

Auckland, New Zealand
Email: d.p.parsons@massey.ac.nz

Abstract

The increasing use of mobile platforms for application deployment provides new opportunities for information

systems architects, but with these opportunities come a number of challenges. The wide range of different types of

mobile device, their operating systems, form factors, language runtimes and browser markup make it difficult to

deploy generic mobile applications that work reliably and efficiently in all situations. It seems that in many cases

there must a trade off between providing a quality user experience and delivering content that is not tailored to a

specific type of device. However there are some software tools and architectures that can help us to minimise this

trade off. In this paper we evaluate an approach to this problem using a Java Micro Edition based smart client,

given generic presentation properties via J2ME Polish and communicating in a platform neutral way using XML

messaging. The context of the prototype implementation is a mobile learning system that uses a range of media

types in its presentation. This paper describes the software architecture, the key design and implementation

issues and an analysis of the performance of the system in realistic connection contexts.

Keywords

Mobile web services, Java Micro Edition, XML, mobile learning

INTRODUCTION

Mobile web based applications may be engineered using a variety of approaches, each of which has its own
strengths and weaknesses. These approaches include thin client mark-up, rich browser client and smart client
applications. As the power and flexibility of mobile devices increases, there are more architectural options for
developing mobile applications, and user’s expectations also increase.

In this paper we describe a mobile web-based application that uses a lightweight XML (eXtensible Markup
Language) over HTTP (Hypertext Transfer Protocol) communication protocol and a Java Micro Edition (Java

ME) smart client
∗

. The motivation for this design was to enable the flexible inclusion of rich content into a
programmable but platform independent client, in order to deliver a relatively rich client experience to a wide
range of devices. Although Java ME has its limitations compared to some other smart client platforms such as
Symbian and BREW, it works across a large proportion of mobile devices (Coulton et al. 2005), including many

different Personal Digital Assistants (PDAs), Blackberry devices and mobile phones. Three quarters of the

mobile phones shipped in 2005 included Java support (Mahmoud 2005). One major advantage that Java ME has
over some other tools is that it is hosted by phones using a range of operating systems, including Windows
Mobile. This means that such applications will be able to continue to be deployed widely even if the operating

system market changes significantly, as some have suggested it might (WindowsForDevices.com 2006). In the
context of mobile phones, the specific configuration and profile typically installed is the Connected Limited
Device Configuration (CLDC) supporting the Mobile Information Device Profile (MIDP). Java ME applications

that run using this profile are known as MIDlets. Of course coding at the higher level of abstraction that enables
interoperability has its costs in performance terms. For example Java ME applications have been shown to

execute at about half the speed of equivalent C programs (Domer et al. 2004). In addition, transmitting and
processing information in XML format is also relatively inefficient. Therefore one of the issues addressed in this

paper is how such a system performs in a realistic deployment context.

Mobile learning

Mobile Learning is gaining popularity as a way of providing learners with educational material wherever they are

and at any time. With new capabilities continually being added to mobile devices, one major challenge, and
opportunity, is finding innovative ways to enhance the learning experience using these new technologies. Mobile

∗

 Java ME was formerly known as Java 2 Micro Edition (J2ME)

17
th

 Australasian Conference on Information Systems Mobile Learning Web Services

6-8 Dec 2006, Adelaide Parsons

learning is not just e-learning on a mobile device, since much e-learning content is inappropriate for small

devices (i.e. small screens make it hard to read a lot of text) as well as inappropriate for the typical context that

these devices will be used in. In many mobile learning scenarios the device will be used on casual basis or as a

tool to obtain knowledge when required (Koschembahr and Sagrott 2005). Therefore course material must be

packaged in short and focussed learning units. In this paper we explore one possible approach to realizing a

mobile learning framework, using Java ME and XML to deliver rich and interactive content to the mobile

learner. We describe the architecture of the prototype system developed; the overall framework, the

communication mechanism used between the client and server, the data model used to capture learning content

and student progress information, and aspects of the user interface. We also provide some test results from

various deployment configurations to assess how well this architecture performs in practice in terms of user
waiting time.

Related work

Although there has been a large amount of work published on mobile learning, little has been focused on the type

of architecture we describe here. (Sakkopoulos et al. 2006) describe a mobile learning system using a form of

web services based on SMS. The authors address issues of browser adaptivity but in this example XML is not

used as the transport mechanism. (Chang 2006) considers a range of server side technologies for delivering

learning technology, and notes the benefits of service oriented architecture, though does not provide any explicit

architecture but reviews user testing of third party implementations. MX-Learn appears to have some similarities

in terms of XML data transmission, and includes some compression facilities, but the architecture of the client is

not explicitly provided, and it appear that the primary XML processing takes place on the server rather than the

client (Casalino et al. 2006). Another platform that has similarities with the one described here is the Mobile
Learning Engine, which also uses a Java ME smart client and XML, but has different deployment versions for
different types of mobile phone (Meisenberger 2004). Since available documentation in English is limited, it has
not been possible to fully analyse the architecture of this system.

TECHNICAL ARCHITECTURE

In this section we outline the rich client mobile learning framework. First we discuss the overall goals of such a
framework, and then examine the process of a client request followed by a discussion about communication
protocol trade-offs, and finally discuss some user interface issues.

Framework Overview

The basic requirements for the system were to provide a flexible framework that could easily be extended (by
adding new content types), adapted (to different platforms) and provide a rich and interactive environment that
could potentially enhance learning.

Response

Request

HTTP

Connection

Manager

login

course

Lesson

Content

Internet

Database

1. Create request

2. Add request to

queue

5. Create

response

4. Dispatch

request

3. Send request

7. Create

response8. Send response

to the calling

object

6. Send reponse

3. Send request

6. Send response

9. Handle

response

CLIENT SIDE BACKEND

Figure 1: Client server interaction process using XML over HTTP

We begin by describing the approach used to process client requests. Figure 1 shows the process of the client

interacting with the server using XML over HTTP. Server side components are primarily Java servlets. The
process begins with the Java ME client creating a request object containing information such as destination

servlet, servlet operation and associated parameters. Once the request object has been populated, the client sends

17
th

 Australasian Conference on Information Systems Mobile Learning Web Services

6-8 Dec 2006, Adelaide Parsons

this request off to the HTTP connection manager, a component that acts as a client-side proxy for the server by

assembling and disassembling the XML messages. From here the HTTP connection manager passes the request

off to the server as an XML message and listens for a response. The XML message is received by the Dispatcher

servlet that takes the message and de-serializes it into a request object; once this is done it then passes the request

object to the appropriate servlet for dealing with the user’s content request. This servlet handles the request,

generates a response object by accessing the data store via a layer of data access objects, and finally sends this

response object back to the client. The response is received by the client’s HTTP connection manager which then

de-serializes the XML response into an appropriate response object and passes this back to the calling object.

Server Side components

The components on the server side are primarily Java servlets, acting as controllers and command objects to

process client requests. Apart from the MIDlet download page, server pages are not used in the application since

page presentation is not required. The four major components on the server include a dispatcher servlet that acts

as a front controller (Fowler 2003), a number of servlets specific to request types, which act as the command or

action components of the front controller pattern, a data access layer that consists of factory and provider object

that utilise the Hibernate object relational mapping framework, and finally the actual data objects that are

mapped to the database. The dispatcher servlet’s responsibility is to handle the initial request, de-serialize the

XML data into a request object and pass the request off to the appropriate servlet. Figure 2 shows these

components mapped into a front controller pattern, with the special characteristic that the key role of these

servlets is to process XML requests and responses.

Each request type specific servlet handles a different type of request from the user; essentially the business logic
is packaged into these command classes. The request object will contain the requested method name and
associated parameters. The servlet queries this request object and executes the appropriate method. Most of these
methods rely on requesting information so the servlet will communicate with the data access layer to obtain the
required information. Each data object implements the XMLGenerator interface that contains the method

signature getXML(). This method is what the servlet uses to generate the XML from the data objects. Once the

servlet has the appropriate XML document it will pass it back to the client.

Data Model

Storing content in the database is a standard design pattern for dynamic web applications that have content that
may frequently change (Graham 2003). The system developed here uses the MySQL relational database (MySQL

AB 2006). Mapping between the server-side object model and the database is implemented using the Hibernate
Core object relational mapping tool (Hibernate 2006). For the mobile learning application the three major entities

in the data model are Student, Course, and Course Content. The student entity includes login information as

well as user progress data, while course information includes available courses, course lessons, and available
content. The part of the model that encapsulates course content provides support for extending the set of content

types that can be used in the application. The current content types that are supported include text (basic

informative text for a particular lesson), rich media such as video or audio and multi-choice content that allows

for testing the user. Some work is required for both enhancing the existing content types (e.g. including images in
the text type and including images and media for multi-choice questions to allow the teacher to present questions
based on rich content) as well as creating new content types, such as other interactive activities. Having an

extensible model means that we can add new types of content, and using XML as the transport mechanism means
that external resources such as RSS (Really Simple Syndication) feeds and web services can be consumed by the

server and delivered to the client directly. Therefore the use of XML as the transport mechanism opens up the
possibility of integrating mashup web services into the application in a Web 2.0 style.

Course

HttpServlet

Dispatcher

XmlServlet

Login Lesson

…

transform

writeXml

processRequest processRequest processRequest

Figure 2: Implementation of the front controller pattern that processes XML requests and responses

17
th

 Australasian Conference on Information Systems Mobile Learning Web Services

6-8 Dec 2006, Adelaide Parsons

Communication with XML over HTTP

The main reason for selecting XML as the message format was because of its flexibility, enabling different types

of client to reuse the same content from the server (Hjelm 2000). Not only is XML used to provide services to a

smart client, but the same document could be transformed using XSLT on the server to provide content for thin

client bowsers. Using HTTP as the transfer protocol guarantees that a large number of devices will be able to act

as clients to the server, even mobile phones using MIDP version 1.0. Although some Java ME devices may be

able to communicate using other protocols such as the User Datagram Protocol (UDP), they are less likely to be

supported than HTTP since only HTTP is a required MIDP connection type within the Generic Connection

Framework (Ortiz 2003).

The XML processing on the client is done using the kXML parser, an XML pull parser that avoids the fragility of

stream based SAX parsers while being more memory efficient than tree-based DOM parsers (Slomiski 2004). It

should be noted that this system does not use web service protocols such as the Simple Object Access protocol

(SOAP), since these would incur a signicant processing and transport overhead. Since interoperability with

external systems was not a major requirement for this system, the benefits of using a more lightweight XML

format were felt to outweigh the benefits of using standardised XML protocols. There are still, however, two

potential performance problems evident in using XML as the messaging protocol. First, it increases the

processing required on the client (for serializing and de-serializing objects for transportation) compared to, for

example, using a thin client Wireless Markup Language (WML) or XHTML-Mobile Profile browser. Examining

the Network Analyzer provided with the J2ME Wireless Toolkit showed that the processing of the data was more

time consuming than the transportation of the data between the client and server when the client and server were

running on the same node. The second problem is that using XML increases the data being transported across the

network, because XML’s self-describing properties render it relatively verbose. This is a problem for two
reasons, the first being that there may be an increase in cost (in monetary terms) for users who may be charged on
the basis of bytes transferred. The second problem this method imposes is that there is an increase in upload
traffic on the network, since the client sends an XML document to the server rather than a standard HTTP
request. Some solutions for these issues include using a different communication protocol (i.e. using standard
HTTP GET requests with parameters) except when an external web service is being exposed or used, or possibly
using binary compression on the XML before transmission. This method is used by the Wireless Markup
Language (WML) to reduce the size of documents transmitted over the Wireless Access protocol (WAP) by
using a compact binary representation, the WAP Binary XML Content Format (WBXML) (WAP Forum 1999).
In this case you could still have the flexibility of XML by adding an additional layer to the server that acts as a
proxy between mobile client requests and the server. In the current prototype XML documents are transmitted as
uncompressed text, but the request mechanism in the framework has been abstracted to allow for easy adoption
of different communication protocols.

Given these issues, one focus of this research was to examine the effectiveness and efficiency of the chosen
communication protocol. The factors that we considered were:

� The size of the client side application (MIDlets have to be installed on small devices with limited
memory that is shared by other applications, pictures, games etc.)

� The self descriptiveness of the data, enabling client side processing

� The bandwidth consumption of the content types being transported and the resulting speed of the

upload and download

� The processing power required and how that might impact on different client platforms

Figure 3 compares the different types of communication protocols available and the trade-offs between them. In

essence, our XML usage can be seen as a compromise between a number of forces.

One of the further considerations that can influence our choice is how well a given technology integrates with
particular technical platforms. For example the MIDP persistence mechanism, the Record Management System,

cannot directly serialise an object but can store an XML document directly as UTF-8 characters in a byte array.

An important decision for any type of mobile application is the decision about the trade-off between network
traffic, memory usage, and storage space. It is an aspect of mobile computing that cannot be ignored as the

application must carefully manage network traffic, as it costs the user for data transfer and potentially increases

latency, memory is very limited, and persisting the data on the mobile device is not always feasible. Ideally the
device would utilize its storage capacity as much as it could but because storage space limitations varies for
different Java enabled phones the only realistic data that could be consistently persisted on the device would be

user information (login and progress details) and some basic user course information, such as available courses,
lessons, and the lesson content (essentially menu content).

17
th

 Australasian Conference on Information Systems Mobile Learning Web Services

6-8 Dec 2006, Adelaide Parsons

Figure 3: Communication protocol and trade-offs

THE USER INTERFACE

An emerging issue in the use of standard Java Micro Edition applications on the client is the limited
sophistication of the user interface (UI) components included in the MIDP UI packages. As the presentational
capability of mobile devices increases, working with the MIDP lowest common denominator approach will
provide an interface that would be no more visually interesting than a simple thin client browser interface.
Customised programming to take advantage of different devices’ user interface capabilities would be
problematic, due to the wide range of device capabilities on the market. To address these problems, a generic
solution to enhancing a portable user interface for Java ME programs is required. One such solution is J2ME
Polish (Virkus 2006), which includes an XML database of the capability of over 300 mobile devices and pre-
processes the Java source code to inject the presentational polish. This tool supports a number of features, but in
particular it supports a style sheet based approach to user interface presentation that enables Java ME programs
to have a look and feel similar to style sheet base mobile browsers without sacrificing the power of the mobile
client or the interoperability of the standard Java APIs. Figure 4 shows the same menu screen from the
application running both with and without the J2ME Polish libraries, displayed on the emulator of the Sun Java
Wireless Toolkit (Sun Microsystems 2006). The build specification for this application uses only generic J2ME
Polish pre-processing, though device specific pre-processing is also possible, at the expense of platform
neutrality.

Figure 4: Generic J2ME user interface using J2ME Polish (left) and standard MIDP UI (right)

Similar device adaptive presentation can be achieved with thin client mobile browsers by using tools such as the
WALL tag library (Passani 2006a). For content such as the menu example used here, such an approach would

probably be more performant and easier to implement. However, the problem with markup is that it lacks the

17
th

 Australasian Conference on Information Systems Mobile Learning Web Services

6-8 Dec 2006, Adelaide Parsons

ability of smart clients to execute applications, apart from some basic mobile browser plugins. In one respect, a

combination of the browser and smart client approach would appear to offer the benefits of both architectures.

Unfortunately this is problematic in practice because MIDlets cannot be seamlessly integrated into a browser

workflow. In fact the only link between a MIDlet and a browser is that a web page can be used to download the

MIDlet’s JAD (application descriptor) and jar (archive) files. Once a MIDlet application has been downloaded,

deployed and launched it operates independently of a mobile browser. This means that if we want to present the

user with a seamless workflow and a consistent look and feel then even aspects such as menus need to be

included in the smart client implementation.

TEST RESULTS

In this section we provide some test results based on access times through part of a use case, where the user

navigates from the login page, though the course choice page, then selects the lesson and finally reaches different

types of content. Testing was undertaken in four separate contexts. The first context was testing on a single node,

where the server (an installation of JBoss application server 4) was running on the same machine as a Java ME

client emulator. The second content was a remote server test, with a remote installation of JBoss being connected

to over the Internet from a desktop machine running the Java ME client emulator. The third test was a 2.5G

mobile phone (an iMate SP5 Windows Smartphone running the Tao Group ‘intent’ Java MIDlet Manager)

connecting to the server over GPRS (General Packet Radio Service) via the Vodafone New Zealand mobile

network. The final test was a 3G mobile phone (a Nokia N70) connecting to the server over 3GSM, again using

the Vodafone New Zealand mobile network. In all of the tests the level of server logging was at ‘info’, which

tended to slow the server’s performance. However since the logging level was consistent for all tests this does not

impact on the relative results. Test results for downloading video files over GPRS tended to vary considerably,
such that a meaningful average time was difficult to ascertain, so we have record a minimum rather than an
average.

Table 1: Average response times in seconds for different media types in different connection scenarios

The results of out tests were quite illuminating. There were two clear aspects to the figures. First, when we were
transmitting small quantities of text, the differences between the different contexts were relatively small. This
suggested that a significant part of the latency was in the XML processing, regardless of whether the client device

was real or emulated and whether or not a mobile network was being used. The second clear issue was that as
soon as we introduced multimedia content, the latency effect of the XML processing was overshadowed by the
latency effect of downloading larger multimedia files, in particular video files, when connecting over the mobile

phone network. This was not so significant for the short sound file that was used for testing, but was more

marked for the video file. Since both of these clips were short (a few seconds each), this effect would be likely to
be more marked for larger files, despite the use of buffering on the devices. The conclusions we drew from these
tests were that (a) XML parsing in itself was an overhead but not excessive, (b) local caching of XML content

would reduce latency effects considerably, (c) media files would have to be short, and recommended only for fast
connections, and (d) these result emphasised that content should be available in more than one format, giving
users appropriate options for their connection context.

FUTURE WORK

The current application serves a number of experimental content types but does not adapt itself to the differences
between mobile devices. To cater for issues such as the excessive download time for movie clips on a 2.5G

device, some adaptivity strategies need to be incorporated. This means providing some types of learning content
in more than one format, so that (a) users with capable devices have a choice and (b) users with limited devices

can access all content in at leats one format. Capability libraries such as WURFL can be useful here, since they
are able to identify device capabilities from the user-agent HTTP header (Passani 2006b).

The User Profile section has not yet been fully implemented, but providing such feedback, and perhaps an

adaptive interface based on user progress, would be valuable, As well as enabling the learner to reflect on their

Use Case Task Local Server Remote Server
over network

Remote Sever over
GPRS

Remote Server
over 3G

Login .5 .5 8 3

Text (menus) 3 4 5 4

Sound Media (6K) 3 4 6 6

Video Media (130K) 3 5 >15 12

17
th

 Australasian Conference on Information Systems Mobile Learning Web Services

6-8 Dec 2006, Adelaide Parsons

progress, (including percentage of completion for available courses and current grading for each course), users

could also to change their preferences, such as setting the default media types for certain content types. For

example a user could choose to view still image slide shows rather than video to reduce download times and data

volumes.

The current prototype is not being used in real learning situations, and has not been secured except by username

and password. Before this prototype can progress beyond the proof of concept stage, a more secure

communication layer will need to be provided, at least by using HTTPS transport, particularly if the system were

to be used for formal assessment. Security is also an issue for the mobile device operating system. It is already

clear that deployment on many devices is dependent on signing the Java code with verified security certificates.

A related system that uses adaptive mark-up rather than a smart client is described in (Parsons and Schroder

2006). A more detailed test that compared the performance of these two approaches would be a useful future

study.

CONCLUSIONS

In this paper we have described the architecture of a mobile learning platform based on XML messaging between

a server and a smart Java client. We have described the general architecture, the reasons for choosing this

architecture and some performance statistics that indicate the potential latency effects of using an XML

messaging/parsing architecture. The prototype system has demonstrated that a smart client Java ME application,

connected to a server using XML, can provide a rich, interactive environment for the mobile learner, However

there are certain usability issues associated with certain types of mobile device. Our experiments showed that

certain types of content could not be delivered using a GPRS device within a reasonable time. Some of these
problems may be addressed by various forms of optimisation to reduce network traffic, reduce latency, and
utilize the mobile device’s own storage and processing capabilities as much as possible. Network traffic may be
reduced by using techniques such as data compression and caching, while latency may be reduced by including
some background processing for downloading. In both cases the mobile device can be leveraged to store local
data (caching) and take on more processing responsibility. For example, large documents might be downloaded
and cached that would support a sequence of user interactions without further reference to the server. Work is
continuing on the prototype to address these technical issues before testing can commence with users.

REFERENCES

Casalino, N., D'Atri, A., Garro, A., Rullo, P., Saccà, D. and Ursino, D. 2006, Proceedings of IEEE International
Conference on Mobile Communications and Learning Technologies: An XML-based multi-agent system
to support an adaptive cultural heritage learning,, pp. 224.

Chang, V. 2006, Proceedings of IEEE International Conference on Mobile Communications and Learning
Technologies: Web Service Testing and Usability for Mobile Learning, IEEE, pp. 221.

Coulton, P., Rashid, O., Edwards, R. and Thompson, R. 2005, 'Creating Entertainment Applications for Cellular

Phones' ACM Computers in Entertainment, vol. 3, no. 3.

Domer, J., Nanja, M., Srinivas, S. and Keshavachar, B. 2004, Proceedings of 2004 workshop on Interpreters,
Virtual Machines and Emulators (IVME’04): Comparative Performance Analysis of Mobile Runtimes on

Intel XScale® Technology, ACM Press, Washington, D.C., USA.

Fowler, M. 2003, Patterns of Enterprise Application Architecture, Addison-Wesley, Boston.

Graham, I. 2003, A Pattern Language for Web Usability, Addison-Wesley, London.

Hibernate 2006, Relational Persistence for Java and .NET, Hibernate, Available: http://www.hibernate.org/,

Accessed: June 16th 2006

Hjelm, J. 2000, Designing Wireless Information Services, Wiley, New York.

Koschembahr, C. V. and Sagrott, S. 2005, In Mobile Learning: a handbook for educators and trainers, (Eds,

Kukulska-Hulme, A. and Traxler, J.) Routledge, London.

Mahmoud, Q. H. 2005, J2ME Luminary: Mark Duesener of Vodafone Group, Sun Microsystems, Available:
http://developers.sun.com/techtopics/mobility/midp/luminaries/markduesener/, Accessed: July 3rd 2006

Meisenberger, M. 2004, Mobile Learning Engine, Available: http://drei.fh-
joanneum.at/mle/start.php?sprache=en&id=0, Accessed: July 3rd 2006

MySQL AB 2006, MySQL 5.0 Relational Database, Available: http://www.mysql.com/, Accessed: June 16th
2006

17
th

 Australasian Conference on Information Systems Mobile Learning Web Services

6-8 Dec 2006, Adelaide Parsons

Ortiz, C. E. 2003, The Generic Connection Framework, Available:

http://developers.sun.com/techtopics/mobility/midp/articles/genericframework/, Accessed: July 3rd 2006

Parsons, D. and Schroder, S. 2006, Proceedings of 11th United Kingdom Academy of Information Systems

Conference: Adaptive Information Systems for the Web 2.0: Developing A Mobile Learning Architecture,

UKAIS, Cheltenham, U.K.

Passani, L. 2006a, WALL - The Wireless Abstraction Library, Available:

http://wurfl.sourceforge.net/java/wall.php, Accessed: July 3rd 2006

Passani, L. 2006b, The Wireless Universal Resource File, Available: http://wurfl.sourceforge.net/, Accessed: July
3rd 2006

Sakkopoulos, E., Lytras, M. and Tsakalidis, A. 2006, 'Adaptive Mobile Web Services Facilitate Communication

and Learning Internet Technologies' IEEE Transactions On Education, vol. 49, no. 2.

Slomiski, A. 2004, On Using XML Pull Parsing Java APIs, Available: http://xmlpull.org/history/index.html,

Accessed: June 16th 2006

Sun Microsystems 2006, J2ME Wireless Toolkit, Sun Microsystems, Last accessed

Virkus, R. 2006, J2ME Polish, Available: http://www.j2mepolish.org/index.html, Accessed: June 16th 2006

WAP Forum 1999, Wireless Application Protocol: Wireless Markup Language Specification Version 1.1,

Wireless Application Protocol Forum Ltd., http://www.wapforum.org/what/technical/SPEC-WML-

19990616.pdf, Last accessed

WindowsForDevices.com 2006, Microsoft to lead in advanced mobile phones by 2010, Available:
http://www.windowsfordevices.com/news/NS7072037463.html, Accessed: June 15th 2006

 ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of Massey University’s Albany Strategic Research Fund, the
Institute of Information and Mathematical Sciences and Vodafone New Zealand in funding this work.

COPYRIGHT

David Parsons and Joshua Newnham © 2006. The authors assign to ACIS and educational and non-profit
institutions a non-exclusive licence to use this document for personal use and in courses of instruction provided
that the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive
licence to ACIS to publish this document in full in the Conference Papers and Proceedings. Those documents
may be published on the World Wide Web, CD-ROM, in printed form, and on mirror sites on the World Wide
Web. Any other usage is prohibited without the express permission of the authors.

