
9th Workshop for PhD Students in ObjectOriented SystemsAwais Rashid1, David Parsons2, and Alexandru Telea31 Computing Department, Lancaster University, UKmarash@comp.lancs.ac.uk2 The Object People, Epsilon House, Chilworth Science Park, Southampton, UKdavidp@objectpeople.com3 Department of Mathematics and Computer Science, Eindhoven University ofTechnology, The Netherlandsalext@win.tue.nlAbstract. The PhDOOS workshop covered a wide scope, as its over 20participants were PhD students in all areas of object orientation. Thepresentations covered topics such as databases, languages, software engi-neering and arti�cial intelligence, components and generative program-ming, analysis and design, frameworks and patterns, aspected orientedprogramming, distribution, and middleware. Several topics of shared in-terest were identi�ed and targeted in separate discussion groups on meta-information, the success or failure of OODBMS, and a general theme onthe future of object orientation. As the participants had various researchinterests covering practically all the OO spectrum, we can con�dentlystate that these topics re
ect actually the concerns and needs of the OOcommunity, and emerge from its concrete needs. This document is to becomplemented by a workshop proceedings document which will publishthe full versions of the presented papers.1. IntroductionThe 9th workshop for PhD Students in Object Oriented Systems (PhDOOS '99)was held on June 14-15, 1999 in Lisbon, Portugal in association with the 13thEuropean Conference on Object Oriented Programming (ECOOP). The work-shop was part of the series of PhDOOS workshops held in conjunction withECOOP each year. The PhDOOS workshops di�er from usual workshops. Thescope of the presentations is wide. This is because the participants are PhD stu-dents and topics are derived from the areas of interest of the participants. Theworkshops serve as a forum for lively discussion between PhD students doingresearch in similar areas. For each participant, this is an opportunity to presenthis/her research to a knowledgeable audience who are working in a similar con-text. In particular, the presenter may learn about new points of view on thisresearch or about related work, and future research collaboration may be ini-tiated. The workshops also feature invited speakers talking about interestingfuture research topics in object orientation. This provides the participants an



9th Workshop for PhD Students in OO Systems 3opportunity to have an "unplugged" discussion with well-known personalities inthe �eld. The workshops also aim at strengthening the international Networkof PhD Students in Object-Oriented Systems (PhDOOS1), which was initiatedat the 1st workshop during ECOOP '91 in Geneva, Switzerland. PhDOOS '99was organised by Awais Rashid, David Parsons and Alexandru Telea and fol-lowed the patterns of its predecessors. The participants were divided into threedi�erent categories. First, it was possible to submit a (3-8 page) position paperfor review, and to give a 30 minutes presentation at the workshop. Second, itwas possible to submit a one-page abstract for review and to give a 15 min-utes presentation. Finally, anticipating some last-minute participants a "guest"status was de�ned for them, including a very short presentation if they wantedto give one. The workshop featured three keynote speakers: Ian Sommerville 2,Gregor Kiczales3 and Ulrich Eisenecker4. The workshop received a total of 30submissions from 14 countries in 3 continents. Of these 19 were position paperswhile 11 were abstracts. For the �rst time in the series of PhDOOS workshopsa review process was introduced. Submissions were reviewed by PhD studentsalmost two-thirds into their PhD. The review process was not designed to se-lect the few very best papers, but to ensure that every participant was able topresent some relevant material, and was sincere and well prepared. As a result,17 position papers and 6 abstracts were selected for presentation at the work-shop. Accepted papers and abstracts are available on the workshop web site at:http://www.comp.lancs.ac.uk/computing/users/marash/PhDOOS99. They willalso be included in the workshop proceedings to be published by University ofEindhoven, The Netherlands.2. Workshop StructureThe workshop was divided into sessions based on the presenters' areas of interest.These were as follows:{ Databases{ Languages, Software Engineering and Arti�cial Intelligence{ Components and Generative Programming{ Analysis and Design{ Frameworks and Patterns{ Aspect Oriented Programming{ Distribution and MiddlewareThe following sections summarise the discussion that took place in the varioussessions.1 http://www.ecoop.org/phdoos/2 Computing Department, Lancaster University, Lancaster, UK3 Xerox PARC, USA4 University of Applied Sciences, Heidelberg, Germany



4 A. Rashid, D. Parsons, A. Telea2.1. DatabasesJuan Trujillo, Awais Rashid, Isabella Merlo, Marlon Dumas and Radovan Chy-tracek presented their work in this session. Juan Trujillo discussed the recentincreased interest in multidimensional databases (MDB) and On-line Analyti-cal Processing (OLAP) scenarios. He pointed out that OLAP systems imposedi�erent requirements than On-line Transactional Processing (OLTP) systems,and therefore, di�erent data models and implementation methods are requiredfor each type of system. There have been several di�erent multidimensional datamodels proposed recently. However, there are certain key issues in multidimen-sional modelling, such as derived measures, derived dimension attributes and theadditivity on fact attributes along dimensions, that are not considered by theseproposals. He presented the GOLD model, an Object Oriented (OO) multidi-mensional model in which all the above-mentioned issues are taken into consid-eration. Since the GOLD model is based on the OO paradigm, data functionalityand behaviour are easily considered, which allows one to encapsulate data and itsoperations (especially useful when referring to OLAP operations). The GOLDmodel, therefore, takes advantage of some OO issues such as inheritance andpolymorphism and allows one to build complex multidimensional models. Fi-nally, another main advantage of the GOLD model is that it is supported byan OO formal speci�cation language (GOLD De�nition Language, GDL) thatallows one to de�ne multidimensional conceptual schemes. More concretely, thisGDL is an extension of the OASIS formal speci�cation language (developed inthe Technical University of Valencia, Spain) to capture more precisely the fea-tures linked to multidimensional databases. In this way, the requirements of themultidimensional conceptual schema can be validated, which allows one to checkwhether the system properties captured in the speci�cation are correctly de�nedor not. Awais Rashid proposed a novel hybrid technique for impact analysis incomplex object database schemata. He argued that like most database applica-tions, object databases are subject to evolution. Evolution, however, is criticalin OO databases since it is the very characteristic of complex applications forwhich they provide inherent support. These applications not only require dy-namic modi�cations to the data residing within the database but also dynamicmodi�cations to the way the data has been modelled (i.e. both the objects resid-ing within the database and the schema of the database are subject to change).Furthermore, there is a requirement to keep track of the change in case it needsto be reverted. Object database schemata designed to ful�l the above set ofrequirements can become very large and complex. The large amount of informa-tion and complex relationships between the various entities in these schematacombine to make the process of assessing the e�ect of change expensive, timeconsuming and error-prone. However, without proper assessment, it is impossiblefor developers and maintainers to fully appreciate the extent and complexity ofproposed changes. For maintainers this makes cost estimation, resource alloca-tion and change feasibility study impractical. For developers, a lack of adequateimpact analysis can lead to di�culties in ensuring that all a�ected entities areupdated for each change to the conceptual structure of the database. Impact



9th Workshop for PhD Students in OO Systems 5analysis has been employed to determine the extent and complexity of proposedchanges during the various stages of the software life cycle. Although many ofthese techniques have been suggested for analysing the impact of changes to OOdesign and code level artefacts, inherent de�ciencies in such methods render themunsuitable for performing change impact analysis in an object database schema.The hybrid technique Awais presented combined traditional impact analysis ap-proaches with experience based capabilities in order to support change impactanalysis in complex object database schemata. Isabella Merlo was of the viewthat object database systems (both the pure object oriented systems and theobject-relational ones) are the systems that in the next few years will replace con-ventional relational databases systems, or even older generations systems (suchas the hierarchical and the network ones). She pointed out that although manyapproaches have been proposed in the past to extend object database systemswith innovative features and interesting results have been achieved, there is a lackof uniformity and standardization across those approaches. In her opinion oneof the reasons is that, the standard for object-oriented databases, ODMG, is re-cent and not well-established. However, ODMG provides the basis for extendingobject-oriented databases with new capabilities. Among them, the introductionof temporal and active capabilities in ODMG is an important issue that researchin the database area has to address. Her research has introduced temporal andactive features in the ODMG standard. The introduction of time and active ruleswas addressed separately. In future she intends to investigate problems relatedto their integration in the same model. Marlon Dumas also discussed data mod-els and languages for temporal OO database management systems. He indicatedthat research in this area has been proli�c regarding temporal extension pro-posals to data models and languages. Whereas in the relational framework theseworks have led to the consensus language TSQL2, and two proposals to the SQL3standardization committee, equivalent results are missing in the object-orientedframework. Early attempts to de�ne temporal object data models failed to be-come widely accepted due to the absence of a standard underlying data model.As the ODMG proposal was released and adopted by the major object databasevendors, several temporal extensions of it were de�ned. Marlon pointed out thatthese neglect at least some of the following important aspects:1. migration support, as to ensure a smooth transition of applications runningon top of a non-temporal system to a temporal extension of it2. representation-independent operators for manipulating temporal data, as toexploit the abstraction principle of object-orientation3. formal semanticsOne of the main goals of his work is to propose a general framework for de-signing DBMS temporal extensions integrating the above features, and to applyit to the ODMG. The design and formalization of the main components of thisframework are almost �nished, leading to a temporal database model namedTEMPOS. In addition to providing temporal extensions of ODMG's objectmodel, schema de�nition and query languages, TEMPOS includes a language



6 A. Rashid, D. Parsons, A. Teleafor describing patterns of histories. The feasibility of the proposal was validatedthrough a prototype implementation on top of the O2 DBMS, which has beenused to experiment on applications from various contexts. Radovan Chytracekdiscussed the great importance of database systems in any HEP (High EnergyPhysics) experiment. HEP community in LHC (Large Hadron Collider) era isin transition from FORTRAN to C++ and from data streams to persistentobjects. Together with that a new data management will be necessary, whichwould allow transition from "�les and tapes" approach towards the access todata in the form of objects by selection of their required physics contents. Datavolumes of the LHC experiments are expected in the PB (1015 bytes) order ofmagnitude and this fact makes the job much harder to do. In order to conformto the object-oriented paradigm, LHCb (Large Hadron Collider Beauty; preci-sion measurements of CP-Violation and rare decays) had to heavily investigatethe design and development of object databases for both the on-line (data ac-quisition and real-time processing) and o�-line (simulation, reconstruction andanalysis) computing environments, e.g. the Event Store, Detector DescriptionDatabase (DDDB), Calibration and Alignment Database etc. For that purposethe Gaudi framework at LHCb experiment is being developed to cover all stagesof physics data processing. The design choices taken at the time of creating theGaudi architecture take into account speci�cs of physicists work in order to pro-vide access to object persistency technologies in a transparent way and properdata abstractions to make the physics data handling natural to physicists. Veryimportant part of the framework is DDDB, which holds data describing detectorapparatus structure and environment.2.2. Languages, Software Engineering and Arti�cial IntelligenceThe languages, software engineering and arti�cial intelligence stream includedcontributions from Stefan Chiettini, Moritz Schnizler, John Flackett and Cris-tian Sminchisescu. Stefan Chiettini opened the session by proposing a techniquefor the documentation of object interaction. He described how the documenta-tion of object-oriented systems usually consists of two parts: First there is thestatic part with the description of classes and methods. This part usually con-tains information about interfaces, inheritance relations and aggregations. Thesecond part, which was the topic of his presentation, describes the dynamic be-haviour of the system in a certain situation at run time. Common design anddocumentation techniques like OMT or UML introduce event trace diagrams(OMT) and sequence diagrams (UML) to visualize run time behaviour of inter-acting objects. These diagrams show the message sequence in a certain situationat run time. Their major weakness is that they are themselves static and there-fore capable of illustrating only one special case, typically called a `scenario', notthe general behaviour of objects. Stefan proposed behaviour diagrams as an ex-tension of existing diagrams to meet the requirements of modern documentation:structured documents with hypertext and multimedia capabilities extended withthe possibility to interactively explore the documentation. Behaviour diagrams



9th Workshop for PhD Students in OO Systems 7enable the user to describe general situations in object-oriented systems like con-ditional message sequences or dynamically bound method calls. Moritz Schnizlerfollowed with his work on a testing approach for program families. Today a pop-ular (because cost e�cient) software development approach is the deployment ofprogram families, sometimes called product lines. A program family evolves overtime from a successful program. Its main characteristic is that its members havemany properties in common, especially their functionality, so object-orientedframework technology is well suited for their implementation. In practice, e�-cient testing of a program family member remains a problem, often meaning thatnew tests have to be developed for every single program. The aim of Moritz'swork is to develop a more e�cient process for testing them. The model for his ap-proach is test benches from other engineering disciplines, e.g. when a car engineis developed. The principle idea is to transfer this approach to the area of soft-ware development with object-oriented frameworks. The main problem of thisapproach is the lack of approved testing methods for object-oriented software.Most testing techniques have their roots in imperative programming and are oflittle help in testing the interaction of collaborating classes which are a char-acteristic of object-oriented software. Moritz is investigating the possibility oftesting the correct collaboration of classes in the context of frameworks, so thattest cases for collaborating classes are developed from the originally intendedbehaviour for their collaboration. An example for such a testable collaborationis the MVC pattern where, for example, a test case is a state change to the modelobject requiring appropriate updates from its observing view objects. Based onthis, built-in tests are included in the framework that automatically test the cor-rect implementation and use of such pre-implemented collaborations. The �nalgoal is to have built-in tests for all characteristic collaborations that comprisethe functionality of a framework. So, using this built-in testing infrastructure, adeveloper can easily retest the framework's core functionality, when he adapts orextends it, in the context of a new program. For the classes under test that meansthey need to be more testable, implementing a special test interface that con-tains, for example, additional inspection methods. John Flackett continued thissession with a description of his ConnECT (Connectionist/Symbolic Engine forHigh-Level Cognitive Tasks) system. ConnECT is concerned with the develop-ment of an object-oriented software tool which brings about a synergy of existingknowledge representation techniques, the focus of which is to model an aspect ofNatural Language Processing (NLP) by automating text indexing and retrieval.ConnECT exploits object-oriented programming techniques in order to providea 
exible and robust architecture within which to model encapsulated matricesand their operations. Fundamentally, the system is controlled through the use ofan envelope class, which in turn utilises object parameter passing as the meansfor synergising the distinct modular processes. An underlying data class formsthe knowledge base upon which extraction operations operate to provide thebuilt in intelligence required for the high level cognitive task proposed. The im-plementation di�ers from that of normal object parameter passing, as part of avariable aggregation, in as much as the data object being passed does not simply



8 A. Rashid, D. Parsons, A. Teleaprovide an extension to the receiving objects attributes, rather, it encapsulatesall of the required attributes. Concluding this session with a language relatedpresentation, Cristian Sminchisescu described his object-oriented approach toC++ compiler technology. Compilers of language translators front-ends com-prise traditionally well-delimited stages like lexical, syntactical, and semanticanalysis. Traditional compiler architecture is based on the separate design andimplementation of these stages, using tools such as LEX and YACC. Althoughmany text books for compiler design, formal languages, and parsing exist, thereare few detailed descriptions regarding the design and implementation of a com-plete language processor for a complex language like C++. In particular, theC++ language has an inherently ambiguous grammar. This implies that no di-rect grammar transformation can transform its grammar into a nonambiguousone. Consequently, the traditional lexical-syntactic analysis pipeline will not bee�ective if one desires to implement the two stages in a modular, decoupled fash-ion. Most existing C++ compilers (such as the GNU g++ compiler for example)couple the two stages intimately by letting them share and modify complex datastructures. The resulting product is monolithic and hard to understand andto maintain from a developer's perspective. Cristian has addressed the aboveproblem by introducing a new, separate stage between the usual lexical and syn-tactical stages. The stage, called LALEX (lookahead LEX) takes over the C++context dependency by special processing and introduction of disambiguationtokens. The resulting program pipeline can be built using tools such as LEX andYACC, is modular, and is simple to understand and maintain. Furthermore, theusage of OO techniques in the semantic analysis stage design is made possible bythe simpli�cation of its structure due to the LALEX stage. Inside this stage, aC++ program is represented as an (OO) abstract syntax graph whose nodes areclasses that model the C++ language semantic constructs. The leaf subclassesof this hierarchy map to the C++ language terminals. The other nodes map toC++ syntactic, C++ semantic, or intermediate `door' constructs. Modelling theparsed language's constructs as an OO type hierarchy has several advantages.First, semantic rules for constructs can be written as speci�c class methods.Second, the semantic stage's control mechanism can be written independentlyof the actual language being parsed, as a generic control algorithm that usesthe Visitor design pattern on the syntax graph. Finally, the OO approach toC++ compiler construction has proven e�cient in the implementation of theambiguity resolution mechanisms needed for C++. The interface between thespecial LALEX stage and the usual parser is kept as simple as possible. LALEXis actually called back by the YACC-style parser to provide tokens. These areprovided in a nonambiguous manner by calling back on the classic LEX stageand by using the disambiguation information provided by a specially maintainedsymbol table. In contrast to other compiler implementations, this symbol tableis encapsulated in the LALEX stage and thus di�ers from the full-scale symboltable used by the parser stage. The above distinction helps for a clear designand implementation of the C++ compiler.



9th Workshop for PhD Students in OO Systems 92.3. Components and Generative ProgrammingThe components session was begun by Anthony Lauder, who introduced `eventports'. Explicit invocation across collaborating components in component-basedsystems leads to tight component coupling. This diminishes component main-tainability, 
exibility, and reusability. The implicit invocation model, whereincomponents register their message interests with a broker, de-couples compo-nents and hence reduces inter-component dependencies. This, however, may ig-nore the historically determined nature of the 
ow of component message inter-ests. This leads to implementations of message receipt functions polluted withguard code that rejects out-of-sequence messages in order to enforce components'time-ordered protocols. Statecharts, however, are ideally suited to expressingsuch protocols. By combining statecharts with implicit invocation, direct real-ization of time-ordered component protocols is achieved without code pollution,o�ering the potential for a cleaner, more adaptable component collaborationstrategy. Anthony presented the development of `event ports', which re
ect thiscombination and encapsulate a promising new component model. Andreas Speckpresented his OO real time (component based) control system. He explained howthe rapid evolution of standard hardware such as workstations and PCs has madeit possible to develop standard hardware-based universal control systems. Cur-rently the traditional proprietary device-speci�c controller systems (e.g. robotcontrols, numeric controls) are ported to this new standard hardware. However,such control systems are still proprietary and device dependent. Andreas posedthe question, how can we now build universal and 
exible control systems? Hehas evaluated three approaches that are based on each other: an object-orientedarchitecture that may be used as an architectural pattern, a conventional object-oriented framework and a component-based framework. In contrast to the to-day's available control systems all these approaches are much more 
exible andcan be used to implement di�erent control functionalities. The pattern providesno semi-�nished code. However it is very useful when the universal control sys-tem should be realized on non standard platforms (e.g. industrial PCs withspecial real-time operating systems). Both framework approaches (conventionaland component-based) already contain reusable base-code which may by ad-justed to the user's needs (e.g. to the required control functionality and desiredstandard platform). Compared with the conventional framework the componentframework is more 
exible since it is not restricted to prede�ned 
exible hotspots. The free exchange of components leads to a highly 
exible system. More-over the development of a component-based framework needs no speci�c existingarchitecture - generic architectural guidance is enough. Ian Oliver argued thatanimation has been shown to be a useful tool for the validation of the behaviouralproperties of a model. Animation can be thought of as the `halfway' house be-tween the speci�cation and the �nal executable code, relying on some form ofexecution of the speci�cation. He then discussed how the Object Constraint Lan-guage (part of the Uni�ed Modelling Language) may be executed in some senseto provide the basis of an animation environment for OO modelling. Ian's workis based around formulating a mapping between OCL statements and a sequence



10 A. Rashid, D. Parsons, A. Teleaof atomic operations that perform some form of basic modi�cation to the UMLobject-diagram. The concepts he is interested in are the class, link and attributevalue and so he has de�ned �ve operations: modify (value), create/delete (object)and link/unlink (links) that can be employed to modify these components onthe diagram. The various presentations were followed by a keynote speech fromProfessor Ulrich Eisenecker who presented a detailed view of components andgenerative programming. He discussed how most software-engineering methodsfocus on singlesystem engineering. This also applies to object-oriented methods.In particular, developing for and with reuse are neither explicit activities nor arethey adequately supported. Furthermore, there is no explicit domain scoping,which would delineate the domain based on the set of existing and possible sys-tems. Current methods also fail to di�erentiate between intra-application andinter-application variability. In particular, inter-application variability is oftenimplemented using dynamic variability mechanisms, even if static ones wouldbe more e�cient. Analysis and design patterns, frameworks, and componentsstruggle for improving reuse and adaptability, but do not provide a complete so-lution. For example, despite the fact that frameworks are created in several itera-tions, there is still a high chance that they contain unnecessary variation points,while important ones are missing. He argued that Domain Engineering over-comes the de�ciencies of single-system engineering. It includes a domain scopingactivity based on market studies and stakeholder analysis. Analysing common-alities, variabilities, and dependencies lies at the heart of domain engineering.The results of domain engineering (i.e. engineering for reuse) are reusable assetsin the form of models, languages, documents, generators, and implementationcomponents. These results represent the input to application engineering (i.e.engineering with reuse). An extremely useful means for capturing features andvariation points are feature diagrams, which were originally introduced by theFODA method (Feature-Oriented Domain Analysis). They are augmented byadditional information including short descriptions of features, dependencies,rationales for features, default values, etc. Two kinds of languages are then de-rived from feature models, namely domain speci�c con�guration languages andimplementation components con�guration languages. The former is used to de-scribe the requirements for a speci�c system from an application-oriented pointof view. The latter is used to describe the implementations of systems in terms ofcomposing components. Con�guration knowledge is used to map from require-ments speci�cations to con�gurations of implementation components. Manualcoding of implementation con�gurations for a large number of variants is a te-dious and error prone process. Therefore, generative programming introducescon�guration generators translating requirements speci�cations into optimisedcon�gurations of implementation components. An adequate support for imple-menting such generators requires the ability to de�ne domain-speci�c languagesand representations (e.g. graphical representations), domain-speci�c optimisa-tions, type systems, and error detection. Furthermore, it is important to be ableto implement domain-speci�c debugging and editing facilities for entering, ma-nipulating, and rendering program representations, as well as domain-speci�c



9th Workshop for PhD Students in OO Systems 11testing and pro�ling facilities. A library of domain abstractions, which also con-tains code extending a programming environment in the above-mentioned areas,is referred to as an active library.2.4. Analysis and DesignThe analysis and design session covered a wide range of subjects and includedcontributions from Akos Frohner, Glenn Lewis, Christoph Steindl and FabioKon. A keynote speech was also delivered by Professor Ian Sommerville. AkosFrohner began by describing layered design visualisation. Designing an object-oriented system is a process that is well supported by a great number of notationsand design techniques such as UML. Although UML provides notation for al-most all aspects of object-oriented software design, it lacks features for describingaspects that are outside of the design domain or require information from di�er-ent diagrams. For example, there are no good notations for the visualisation offrameworks, friendship relationships, components, meta-level aspects or securityconsiderations. As a possible solution Akos proposes to use dynamic multi-layerdiagrams, in addition to passive, paper oriented diagrams. Such diagrams allowthe user of an object-oriented CASE tool to concentrate on the speci�c featurethat she or he is interested in, and �lter out the remaining parts. The basic ideais to place related elements of a diagram on to one layer and stack these layersup. If all the layers are used, the �nal diagram will contain all details, but onemay hide any unnecessary layers to focus on a small and comprehensible sub-set of the components. In an active CASE tool layers can be locked to disablethe modi�cation of some elements. Akos also explained the task of frameworkdocumentation, showing only the skeleton of a hot-spot, and letting the useradd more details by uncovering hidden layers. One may also extend the hot-spot in place on a new layer without modifying the original diagram. Akos gavefurther examples using the layered structure to support the design of complexsystems and their three-dimensional visualisation. The layering technique addssome new notational features to the existing possibilities of UML, but the mainimpact is on the design work itself. Using layers to associate elements allowsusers to express their own way of thinking above the logical structure of themodel (i.e. package boundaries). Akos' work is part of an ongoing research touse non object-oriented features in the design of large programs, including thestorage and visualisation of such information. This presentation was followedby Glenn Lewis, describing a practical approach to behavioural inheritance inthe context of coloured Petri Nets. Inheritance means one can begin with anabstract representation of an object that is easy to understand and clutter-free,and incrementally change that to a more concrete representation. In other words,inheritance provides support for abstraction, which is the most common and ef-fective technique for dealing with complexity. The principle of substitutabilityhas been proposed in various forms to give the expectations that an incremen-tally changed component should comply with if it is to be substituted for acomponent. One possibility, which is known as weak substitutability, relates to



12 A. Rashid, D. Parsons, A. Teleathe compatibility of method parameter and result types - it does not require be-havioural compatibility. Many consider that weak substitutability is not enough:substitution may still lead to incorrect behaviour even if the weak substitutabil-ity principle is satis�ed. Another version of the substitutability principle, referredto as strong substitutability, requires behavioural compatibility between the typeand subtype. There are a number of proposals for substitutability in the contextof concurrent object-oriented systems, but it is unclear whether these proposalsare overly constrained for practical application. Glenn presented a discussion ofsubstitutability, and in the context of coloured petri nets he presented a set ofthree incremental modi�cations which lie somewhere between weak and strongsubstitutability. The constraints that he imposes can be checked statically andthey have the property that if the re�nement is at least as live as the abstraction,then strong substitutability holds (this property cannot be checked statically.)The incremental changes are presented informally. Formal de�nitions of the pro-posed increment changes can be found elsewhere, as can an examination of casestudies in the literature that suggests the above forms of incremental change areapplicable in practice. Christoph Steindl followed with a presentation of staticanalysis of object-oriented programs, speci�cally describing his work on programslicing in Oberon. Static analysis derives information by inspection of the sourcecode, and this information must be valid for all possible executions of the pro-gram. Conservative assumptions must be taken if the program uses conditionalbranches and iteration since it is not known at compile time which branches willbe taken at run time and how many iterations there will be. Static informationis necessarily less precise than dynamic information (obtained by monitoring onespeci�c execution of a program) but it can be computed once for all possible ex-ecutions, whereas dynamic information must be computed again and again. Twomain concepts of object-oriented programming are polymorphism and dynamicbinding. These dynamic aspects are di�cult to integrate into static analysis,e.g. in most cases the exact destination of polymorphic call sites cannot be de-termined by static analysis. Additionally, data 
ow analysis for heap allocatedobjects is di�cult. Since the number of objects is unbounded, they cannot behandled individually. If they are classi�ed into groups, then all objects of a groupare aliases for the data 
ow analysis. Christoph has developed a program slicerthat models dynamic aspects of object-oriented programs correctly . Startingfrom conservative assumptions about dynamic binding and aliases, new userguidance techniques are used to reduce these assumptions. In this way, staticanalysis can be enriched with user-supplied knowledge to yield information witha precision similar to dynamic information. Fabio Kon presented a framework fordynamically con�gurable multimedia distribution. Multimedia applications andinterfaces will radically change how computer systems will look in the future.Radio and TV broadcasting will assume a digital format and their distributionnetworks will be integrated with the Internet. Existing hardware and softwareinfrastructures, however, are unable to provide all the scalability and quality ofservice that these applications require. In previous work, Fabio has developeda framework for building scalable and 
exible multimedia distribution systems



9th Workshop for PhD Students in OO Systems 13that greatly improves the possibilities for the provision of quality of service inlarge-scale, wide-area networks. This framework was successfully deployed indi�erent situations including the live broadcast of a long-term, live audiovisualstream to more than one million clients in dozens of countries across the globe.In his presentation, he identi�ed some signi�cant problems that limited the us-ability of the previous framework. He proposed mechanisms for attacking theseproblems and described how he was using mobile con�guration agents and aCORBA-based framework for providing e�cient code distribution , dynamicrecon�guration, and fault-tolerance to the multimedia distribution framework.The work is based on the infrastructure for dynamic con�guration and manage-ment of inter-component dependence provided by the 2K Distributed OperatingSystem. 2K is a component-based system that uses a dynamically con�gurableCORBA communication layer to support on-the-
y adaptation of component-based applications. In his keynote speech Professor Ian Sommerville discussedintegration of social and OO analysis. Most methods of analysis focus on tech-nical aspects of the system to be developed and provide little or no support forunderstanding human, social and organisational factors that may in
uence thedesign of a system. While techniques such as use-cases represent an importantrecognition of the importance of people, there is still the key issue of determiningwhere use-cases come from , what are critical use-cases, etc. His talk presentedan overview of a method called Coherence that has been speci�cally designedto support social analysis of a work setting and to represent this analysis inUML. The motivation for this work was a conviction of the importance of socialanalysis and the need to take this to the software engineering community interms that they could understand. The outcome of the social analysis is a set ofuse-cases that can then be the starting point for more detailed object-orientedanalysis.2.5. Frameworks and PatternsNathalie Gaertner, Alexandru Telea, Markus Hof and Aimar Marie led the dis-cussion in this session. Nathalie Gaertner presented her experiences with workingwith business patterns and frameworks. She de�ned frameworks as generic ap-plications, described by a set of abstract classes and the way instances of theirsubclasses collaborate. She pointed out that although frameworks allow a rapiddevelopment of new applications through customisation there are two main prob-lems. First, designing a framework is a highly complex , time-consuming workand secondly, understanding the overall architecture and how to use it is di�-cult. She argued that one way to improve this situation is to include businessand design patterns in the framework's architecture since each pattern providesa concise and useful architectural guidance to a related problem. Moreover, thereuse of patterns in software development allows the integration of 
exible mod-ular adaptable well-engineered solutions at a higher level than classes . Businesspatterns are domain-speci�c patterns. Integrating these patterns into frameworks- both related to the same business - makes it possible to exploit the generic ar-chitecture of frameworks along with the high level abstractions , business knowl-



14 A. Rashid, D. Parsons, A. Teleaedge and documentation of the patterns. Nathalie presented a fuzzy logic controlframework as an example to demonstrate the synergetic approaches of businesspatterns and frameworks. Alexandru Telea described the VISSION SimulationSystem which combines OO and data
ow modelling. He discussed that scienti�cvisualisation and simulation (SimVis) is mostly addressed by frameworks usingdata and event 
ow mechanisms for simulation speci�cation, control, and in-teractivity. Even though OO powerfully and elegantly models many applicationdomains, integration of existing SimVis OO libraries in such systems remains adi�cult task. The elegance and simplicity of the OO design usually gets lost inthe integration phase, as most systems do not support the combination of OOand data
ow concepts. Practically no SimVis system addresses the needs of itscomponent developers, application designers, and end users in a uniform manner.His proposed solution, VISSION, is a general-purpose visualisation and simula-tion OO system which merges OO and data
ow modelling in a single abstraction.This abstraction, called a metaclass, extends non- intrusively a C++ class withdata
ow notions such as data inputs, outputs, and update operation, to promoteit to a higher, more reusable level . VISSION uses a C++ interpreter to executeglue code that connects the metaclasses representing the system's components.Components can be loaded, instantiated and connected dynamically without re-compiling or relinking VISSION. The needs of the three user groups mentionedabove are addressed extensively and uniformly. Component designers get the fullpower of C++ to design new components or reuse existing C++ class librarieswithout having to change them. Application designers get a graphics user in-terface (GUI) in which component iconic representations can be assembled tobuild the desired SimVis application as a data
ow network. End users can easilysteer a running simulation by the GUIs that VISSION automatically constructsfor each component, or by typing C or C++ code that is interpreted dynami-cally . Alex also presented screenshots of several simulations and visualisationssuccessfully constructed in VISSION.Markus Hof presented a framework for arbitrary invocation semantics. He�rst discussed how most object-oriented languages for distributed programmingo�er either one �xed invocation semantic (synchronous procedure call), or alimited number of invocation semantics. At best, they support a default modeof synchronous remote invocation, plus some keywords to express asynchronousmessaging. The very few approaches that o�er rich libraries of invocation ab-stractions usually introduce signi�cant overhead and do not handle the com-position of those abstractions. He then described an approach for abstractingremote invocations. Invocation semantics, such as synchronous, asynchronous,transactional, or replicated are all considered �rst class abstractions. Using acombination of the Strategy and Decorator design patterns, he suggested ane�ective way to compose various invocation semantics. This technique allowsdi�erent semantics on di�erent objects of the same class. It is even possible tohave several di�erent views of one and the same object simultaneously. To reducethe overhead induced by the 
exibility of the approach, just-in-time stub genera-tion techniques are used. With the help of the semantic information supplied by



9th Workshop for PhD Students in OO Systems 15the programmer, the necessary stub and skeleton code pieces are generated onlyon demand. This allows for late optimisations and adaptations. The work distin-guished between two kinds of invocation abstractions . First, actual abstractionsresponsible for the execution of the method (synchronous, asynchronous, delayed,etc), and second, invocation �lters that decorate an abstraction or other �lters(at-most-once, transactional, logging, etc). Aimar Marie 's discussion focused onproblems linked to the design of medical diagnostic systems. She pointed outthat nowadays, computer-aided systems cannot be black boxes which containa monolithic process. Systems must contain all components useful to store in-formation, to search for a speci�c disease, to consult validated clinical tablesand to compare the results for several diseases. This suggests the production ofstrongly inter-connected process modules, sharing a common database of infor-mation. Sharing information is possible when the knowledge base is structuredregardless of the treatment used. She has adopted an object-oriented architec-ture to design the knowledge base and a generic model of collaboration betweenseveral treatment modules. In this context, she has tested how the use of pat-terns can help develop such a model and to improve the design of the system.In her opinion the di�erent problems to solve are: to model in the same waypathologies which have heterogeneous signs, to identify generic behaviour intothe various procedures of treatment and to design an interface for these proce-dures to guarantee the communication through the system. She has added tothe object model, four patterns which give a solution to these problems. Thepattern Composite keeps hidden the complexity of signs and allows treating allof them as simple sign. The pattern Iterator is used to de�ne the generic taskcommon to all diagnostic procedures to access the description elements and givethem to a speci�c diagnostic engine. The pattern State saves the information of"presence" or "absence" of signs without taking into account which treatmentis done, numerical calculus, symbolic evaluation and so on. Finally, the patternStrategy de�nes a class of reasoning method, all diagnostic procedures are de-sign to respect this interface. The four patterns de�ne four strategic points ofthe diagnostic system architecture which are not given by the semantic analysisof the domain.2.6. Aspect Oriented ProgrammingGregor Kiczales gave a talk on aspect-oriented programming and the AspectJtool, an aspect-oriented extension to Java. Using the SpaceWar Game as an ex-ample, he explained how `cross cutting concerns' can appear across other mod-ularised components of a system. For example, issues of game `look and feel'can be spread amongst many otherwise loosely coupled classes. Given that suchcross cutting concerns are inevitable, and that they cause tangled code and dif-�culties in maintenance, we can usefully modularise them into `aspects '. Anaspect encapsulates a cross cutting concern, `introducing' �elds and methods toclasses and `advising' (extending) existing processes . Gregor went on to describehow aspect orientation is at a stage where empirical testing is required alongwith theoretical and practical developments analysis to prove its validity and



16 A. Rashid, D. Parsons, A. Teleausefulness. Building a user community is essential to researching this approachand showing what results it can produce. Speci�c issues for research includesoftware engineering (�nding aspects, process, program modularity), languagedesign (support for both static and dynamic cross-cuts), tools (programmingenvironments, aspect discovery, refactoring ) and theory (language and programsemantics, cross-cutting). Gregor concluded his talk with a question and answersession, describing various characteristics of syntax and comparing his work withother approaches such as subject oriented programming.2.7. Distribution and MiddlewareIn this session presentations were made by Fabio Costa and Christoph Peter.Fabio Costa talked about middleware platforms, an e�ective answer to the re-quirements of open distributed processing. However, in his opinion existing mid-dleware standards do not ful�l important requirements of new application areaslike multimedia and mobile computing, which require dynamic adaptability ofthe underlying platform. He was of the view that such requirements can be metby the adoption of an open engineering approach, based on computational re-
ection. Re
ection o�ers a principled way to open up both the structure and thebehaviour of a system by providing a causally connected self-representation ofits implementation, and allowing its inspection and manipulation. He presentedhis ongoing research on the design and implementation of a re
ective architec-ture for multimedia middleware, which allows the run-time recon�guration of thecomponents and services of the platform . The design is based on a multi-modelre
ection framework, whereby the di�erent aspects in the engineering of theplatform are identi�ed and each one is represented by a distinct and orthogonalmeta-model. There are currently four such meta-models:{ encapsulation (exposes the constitution of interfaces){ composition (represents the con�guration of compound components){ environment (exposes the mechanisms for message handling at interfacesboundaries){ resource management (represents the reservation and allocation of resources)At run-time, meta-objects of any of these meta-models can be created andassigned to individual components of the platform. This makes explicit the cor-responding aspect and allows the programmer or some controlling mechanism todynamically recon�gure the internals of the platform. Christoph Peter arguedthat languages like C++ and Java have shown that strong, static typing is agood basis for programming. In distributed environments, there are well knowncalculi like the ss-calculus or Vasconcelos' TyCO. Static type systems for thesecalculi also exist. But their expressiveness is limited, as none of them can ex-press the sequencing of messages which is an important part of the behaviour ofobjects. He suggested use of (Static) Process Types, based on a concept whichallows to express the sequencing of messages in the type information. This isdone by providing changeable state information in the types. When a message is



9th Workshop for PhD Students in OO Systems 17sent, information about the state change of the message's receiver is provided bythe type. The sender of the message can update its information about the stateof the receiver. His presentation concentrated on applications of the process typeconcept:{ Examine a matching relationship for process types: Process types providethe subtyping relationship and genericity for re-use. But binary methodscan be re-used only with a higher-order subtyping mechanism like matching.{ Using process types for deadlock detection: With asynchronousmessage pass-ing, an object is blocked while waiting for an answer (message) from anotherobject. If there are cycles of blocking objects, a deadlock occurs. An extensionof process types allows to express that a request shall imply an answer. Thisproperty can be guaranteed statically and therefore, an important reason fordeadlocks can be detected.{ Integrate process types into CORBA: The IDL of CORBA provides littleinformation about the behaviour of an object. A goal of Christoph's researchis to examine what possibilities of process types may be used to enhance theinterface information but still provide static type checking.3. Workshop DiscussionsThree questions of key interest to the workshop participants were identi�edduring the various sessions. These were as follows:{ OODBMS: Industrial failure or next generation technology?{ Using meta-information{ New approaches in object orientation - Where will we be tomorrow?The above questions were discussed by the interested participants who ar-rived at the following conclusions.3.1. OODBMS: Industrial Failure or Next Generation Technology?Discussion Participants: Radovan Chytracek, Marlon Dumas, Anthony Lauder,Awais Rashid, Juan TrujilloObject-oriented programming languages, systems, and methodologies haveexperienced tremendous industrial success. Object-Oriented Database Manage-ment Systems (OODBMS), however, are lagging far behind relational DBMSsin at least three dimensions: market penetration, sales revenue, and consumerawareness. The purpose of the discussion was to elucidate some of the reasonsbehind this apparent "industrial failure" and to draw some possible conclu-sions on the subject . In the discussion, participants considered OODBMS tobe those which provide classical DBMS services (persistence, transactions , con-currency, etc), under a data model supporting the basic concepts of currentlyused object-oriented languages (e .g. Java, C++). In particular, Versant, Object-Store, O2 and Jasmine are considered to be OODBMS while Oracle v8 is not,



18 A. Rashid, D. Parsons, A. Teleasince it supports neither inheritance nor encapsulation. Some of the OODBMSsuppliers (e.g. ObjectStore and Jasmine) are not actually experiencing any com-mercial or industrial failure (in a �nancial sense). Nevertheless their visibilityand market penetration remain limited. As a result, their long-term prospectsare not very clear. Other OODBMS suppliers are currently experiencing severe�nancial and/or commercial problems. OODBMS suppliers emphasize object-orientedness, and its bene�ts over the relational paradigm. Typical claimed ben-e�ts include reduction of the impedance mismatch between the programminglanguages and the DBMS, performance advantages (due to navigation fromroots and sophisticated caching and swizzling technologies), and transparentsupport for complex user-de�ned types. This latter feature has actually enabledOODBMSs to make major in-roads in some niche markets around specialized�elds needing complex data such as computer-aided design and computer-aidedsoftware engineering. On the other hand, RDBMS suppliers emphasize scal-ability, reliability, security, and other hard-won DBMS features that are cur-rently (arguably) missing in OODBMS. As a result, RDBMSs have gained (andcontinue to gain ) massive penetration into almost all markets. Furthermore,RDBMS are currently trying to integrate some OO features into their products.Although this will not transform them into fully-
edged OODBMS, it will reduceto some extent their limits regarding complex data management. From these ob-servations we may say that OODBMSs, in contrast to RDBMSs, are a relativefailure (compared to early promises in terms of market penetration). There aretwo viewpoints with respect to what the future may bring. The "optimistic"one states that OODBMS are simply "hibernating", and that their time willcome. The contrasting view is that, in the future, a major shakeout will occur,eliminating all but a few OODBMS suppliers addressing small niche markets ,with no major penetration ever occurring. Below we enumerate some of reasonsunderlying the current industrial failure of ODBMSs, and it is, we believe, theway in which these issues are addressed by ODBMS vendor that will determinetheir future prospects:{ There are many OODBMS suppliers, whereas the RBDMS marketplace hasundergone waves of mergers, buyouts, and bankruptcies, leaving a smallnumber of players. This leaves potential buyers of ODBMSs with the un-easy feeling that a similar future shakeout could eliminate any supplier theycommitted to now.{ Despite the existence of an OMG-sanctioned supposed standard, detailedstudies have revealed many inconsistencies within it, and each of the OODBMScompanies has followed their own charter leading to portability problemsacross products.{ Strong OODBMS research in academic labs has had limited commercialpickup, so that OODBMS vendors are having to resolve fundamentally dif-�cult issues on very tight budgets with limited resources.{ OODBMSs lack important features required by industry: e.g. performancewith large amounts of data (this is a contentious issue), security, and scala-bility.



9th Workshop for PhD Students in OO Systems 19{ RDBMSs have proven their reliability though hard-won debugging in the�eld over many years. OODBMSs have not yet gone through this, leading touncertainty over their reliability.{ Users are already committed to an RDBMS, with their own layers to resolveimpedance mismatches, with mountains of application code, and with sta�highly trained and experienced in RDBMS technology.{ It is not clear to what extent the touted advantages of OODBMSs are neededfor mainstream applications.3.2. Using Meta-InformationDiscussion Participants: Stefan Chiettini, Akos Frohner, Markus Hof, ChristophSteindl, Alexandru Telea.In the past, systems have been monolithic and static. In the future, sys-tems will be modular and dynamic. The use of meta-information helps to per-form this evolutionary step or is an enabling technology for it. When we lookat the historical development of programming languages, we see a continuingrise of the level of abstraction of machine details: from machine instructions,via assembly languages and higher programming languages to structured andobject-oriented languages. The next step in this development is platform in-dependence. Combined with network transparency, it allows writing programsthat can run on any computer in a networked environment. The composition ofnew software out of existing components is another promising application area:The programmer composes programs in a visual programming environment bysticking components together or glues them together using scripting languages.The components shall then cooperate, which they only can do if they have someknowledge about each other: their interfaces, properties, facilities and so on.Meta-information seems to be the bridge between abstraction on one hand andknowledge about each other on the other hand. Meta-information makes someknowledge explicit that was previously only implicit. It is also a means to makeinformation available at run time that was usually only available at compile time.Meta-information is also the key to systems that are really extensible where onlythe required components are active at a time and where additional functionalitycan be added on demand. Meta-programming can exploit meta-information toseveral degrees. It can use metainformation to:{ observe and manipulate itself and other running programs (introspection).{ explicitly call functionality that is normally hidden in the run-time system,e.g. creation of new objects, dynamic loading, linking, and unloading of com-ponents (interception).{ change the behaviour of language primitives at run time, e.g. object creationand destruction, method dispatch, and access to simple attributes (invoca-tion) The participants agreed that it will be crucial for every computingsystem and especially programming language to o�er a standardized accessto meta-information. Many do so already (Lisp, Smalltalk, CLOS, Beta,



20 A. Rashid, D. Parsons, A. TeleaOberon-2, Java), and the implications and principles are apparently well un-derstood. However, in the participants' view it is vital that this access ise�cient in memory usage as well as in its run-time behaviour. They sawa wide �eld for further research and projects in this area: retrieving meta-information from legacy systems in an automatic or semiautomatic way;extending popular languages to handle meta-information; creating visualenvironments to support various aspects of this �eld.3.3. New Approaches in Object Orientation - Where will we betomorrow?Discussion Participants: Andreas Speck, Fabio Kon, Ian Oliver, Aimar Marie,Moritz Schnizler, John Flackett, Martin Geier (guest participant)Currently new trends in object-orientation are rising such as aspect-orientedprogramming (introduced by G. Kiczales' and C. Lopes' group at Xerox PARC),the component generators (U. Eisenecker, K. Czarnecki and D. Batory's work),component-based approaches (C. Szyperski), intentional programming (C. Si-monyi) and adaptive programming (K. Lieberherr). The states of these ap-proaches are quite di�erent. While components are already in use and sup-ported by many commercial systems (e.g. CORBA implementations, COM orJava Beans) others are still in evaluation. This great variety of approaches leadsto many questions: What is their impact in the future? Do they bear interestingresearch challenges? Which of them will supersede in the future? Within the Ph-DOOS community many PhD candidates are doing research in this area. Specialcrucial points are aspect-oriented programming (especially in connection withobject distribution), re
ective architectures, component generators, component-based software development including the development of generic architecturesfor component-based frameworks, and dependence management in component-based distributed systems, dynamically con�gurable middleware systems as wellas secure ports for inter-component communication.4. AcknowledgementsWe gratefully acknowledge the �nancial support of AITO and Object TechnologyInternational Inc. This support made possible the presentce of many participa-tions at the workshop, as well as the initiative to produce separate workshopproceedings containing the full versions of the presented papers.5. Participants List1. Stefan Chiettini, Institut fur Praktische Informatik, Johannes Kepler Univer-sity Linz, A-4040 Linz, Austria, email: stefan.chiettini@ssw.uni-linz.ac.at2.Radovan Chytracek, CERN, Geneva, Switzerland, email: Radovan.Chytracek@cern.ch3. Fabio Costa, Computing Department, Lancaster University, Lancaster LA1



9th Workshop for PhD Students in OO Systems 214YR, UK, email: fmc@comp.lancs.ac.uk4. Marlon Dumas, LSR-IMAG Lab, University of Grenoble, France, email: Mar-lon.Dumas@imag.fr5. John C. Flackett, Systems Engineering Faculty, Southampton Institute, EastPark Terrace, Southampton, SO14 0YN, UK, email: John.Flackett@solent.ac.uk6.Akos Frohner, Eotvos Lorand University, Institute of Informatics, Budapest,email: Akos.Frohner@elte.hu7.Nathalie Gaertner, Laboratoire EEA, Groupe LSI, Universite de Haute-Alsace,12 rue des freres Lumiere, 68093Mulhouse Cedex, France, email: n.gaertner@evhr.net8.Markus Hof, Institut fur Praktische Informatik, Johannes Kepler UniversityLinz, A-4040 Linz, Austria, email: hof@ssw.uni-linz.ac.at9.Fabio Kon, Department of Computer Science, University of Illinois at UrbanaChampaign, USA, email: f-kon@uiuc.edu10.Anthony Lauder, Computing Laboratory, University of Kent at Canterbury,Canterbury, Kent, CT2 7NF, UK, email: Anthony@Lauder.u-net.com11.Glenn Lewis, Electrical Engineering and Computer Science, University ofTasmania, email: Glenn.Lewis@utas.edu.au12.Marie Beurton-Aimar, University of Bordeaux, France, email: Marie.Aimar@dim.ubordeaux2.fr13.Isabella Merlo, Dipartimento di Informatica e Scienze dell'Informazione, Uni-versity of Genova, Italy, email: merloisa@disi.unige.it 14.Ian Oliver, Universityof Kent at Canterbury, England, UK, email: ian.oliver@bcs.org.uk15.David Parsons, The Object People, Epsilon House, Chilworth Science Park,Southampton SO16 7NS, UK, email: davidp@objectpeople.com16.Christof Peter, Technische Universitat Wien, Institut fur Computersprachen,Argentinierstrasse 8, A-1040 Vienna, Austria, email: fchristofg@complang.tuwien.ac.at17.Awais Rashid, Computing Department, Lancaster University, Lancaster LA14YR, UK, email: marash@comp.lancs.ac.uk18.Moritz Schnizler, Aachen University of Technology, Department of ComputerScience III, Software Construction Group, Ahornstr. 55, 52074 Aachen, Germany, email: moritz@informatik.rwth-aachen.de19.Cristian Sminchisescu, Department of Computer Science, Rutgers University,USA, email: crismin@paul.rugers.edu20.Andreas Speck, Wilhelm-Schickard-Institut fur Informatik, Universitaet Tue-bingen, 72076 Tuebingen, Germany, email: speck@informatik.uni-tuebingen.de21.Christoph Steindl, Institut fur Praktische Informatik, Johannes Kepler Uni-versity Linz, A-4040 Linz, Austria, email: steindl@ssw.uni-linz.ac.at22.Alexandru Telea, Department of Mathematics and Computing Science, Eind-hoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Nether-lands , email: alext@win.tue.nl23.Juan Trujillo, Research Group of Logic Programming and Information Sys-tems, Dept. of Financial Economics, University of Alicante, E-03071, Alicante,Spain , email: juan.trujillo@ua.es24.Martin Geier, University of Erlangen/Nuremberg, Germany (guest partici-pant)




