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Abstract. Evolutionary algorithms have been applied to the dynamic
structural test data generation problem. The fitness evaluation methods
proposed so far either suffer from poor guidance characteristics or can not
be applied uniformly. We propose a new method based on the pairwise
sequence comparison techniques defined in bioinformatics. Interpreting
the desired and generated paths as sequences, aligning and comparing
these paths gives an intuitive measure about their similarity. We also
define a sequence distance which measures the amount of change needed
to convert the generated path into the desired path. The similarity and
distance scores can then be used for evaluating candidate solutions in a
search-based test data generation problem. Our preliminary tests show
that this method produces promising results.

1 Introduction

Testing is a critical and costly activity in software development and techniques
for automating this process have been explored extensively [5]. Metaheuristic
search techniques have been successfully applied to this problem (see [9] for a
detailed survey), especially in the field of structural test data generation, where
the problem is generating input values for program components in order to cover
specific paths or statements.

Given a code which takes some input parameters, if the aim is to find a set
of input values that will follow a desired path through this code, search methods
need to be able to evaluate input value sets to determine which of these are
better than others. The basic approach for evaluating input value sets in dynamic
structural test data generation methods can be summarized as follows:

1. represent a set of input values as a candidate solution
2. apply these input values to the code and observe the generated path
3. compare the generated path with the desired path and assign a fitness value

to the input set based on this comparison

Various evaluation methods have been proposed for the test data generation
problem, mostly based on distances to convert incorrect branching decisions
into correct ones and on correctly covered program constructs. Many of these
methods provide little guidance for the search to cover hard-to-reach portions of
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the code due to their unfavorable characteristics such as creating large plateaus in
the search space. Besides, many methods suffer from implementation difficulties
such as the need to partition the problem into subproblems for handling different
parts of the code or the need for a structural analysis of the code.

We present a new fitness evaluation method based on the pairwise sequence
comparison techniques in bioinformatics. A short summary of this study has
been published in [13]. If we consider the desired path and the path of executed
statements as sequences, finding the similarity and/or distance between these
sequences corresponds to the pairwise sequence comparison problem in bioinfor-
matics. To compare two sequences, first they are aligned and then similarity and
distance measures are calculated based on the aligned sequences [10]. We aim to
show that this method can provide good guidance characteristics while at the
same time it is easy to implement.

For discussing the issues in fitness evaluation, we will consider two commonly
used benchmark problems:

Triangle classification ([2], [9], [12]) The function takes three input parameters
which represent the sides of a triangle and returns the type of the triangle (one of
”invalid”, ”scalene”, ”isosceles”, and ”equilateral”). An example implementation
for the problem in the Python programming language is given in Figure 1. This
problem is suitable for demonstrating basic issues.

1: def triangle(a, b, c):

2: if a > b:

3: a, b = b, a

4: if a > c:

5: a, c = c, a

6: if b > c:

7: b, c = c, b

8: if a + b <= c:

9: result = INVALID

10: else:

11: result = SCALENE

12: if a == b and b == c:

13: result EQUILATERAL

14: elif a == b or b == c:

15: result ISOSCELES

16: return result

Fig. 1. Triangle classification.

Finding the minimum and maximum elements in a list ([8]): The function takes
a list of numbers and three integers (the indices of the first and last elements
and a step size) which select a sublist. It returns the minimum and maximum of
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the elements in the sublist. An example implementation for the problem in the
Python programming language is given in Figure 2. This problem is suitable for
demonstrating issues concerning loop structures.

1: def minmax(low, high, step, A):

2: min = max = A[low]

3: i = low + step

4: while i < high:

5: if max < A[i]:

6: max = A[i]

7: if min > A[i]:

8: min = A[i]

9: i = i + step

10: return min, max

Fig. 2. Finding the minimum and maximum elements.

2 Related Work on Evolutionary Software Testing

Choosing an appropriate fitness evaluation function is a critical step when apply-
ing an evolutionary algorithm to any problem because good fitness functions will
guide the search towards better solutions. In the next sections, we will discuss
the main methods that have been proposed. A recent survey and comparison of
fitness functions for path testing can be found in [14].

2.1 Branch Distances

A commonly used evaluation method is computing branch distances. If the con-
trol flow continues with the unwanted branch at a condition statement, the
branch distance at that statement is defined as the difference of the actual and
necessary values of the variables in order to let the flow take the intended branch.
Since solutions with smaller branch distances are preferred, the problem becomes
one of minimizing the branch distances and the fitness value 0 indicates an op-
timum solution. For the triangle classification example, if the desired path is
< 2, 4, 5, 6, 8, 11, 12, 14, 15, 16 > and the input values are a = 23, b = 66, c = 69,
the a == b or b == c predicate on line 14 will be false and flow will continue
at line 16, whereas the predicate should be true and control should have been
transferred to line 15. The distance for the a == b predicate is |23−66| = 43 and
the distance for the b == c predicate is |66 − 69| = 3. If any of these predicates
were true, the compound predicate would have been true, therefore the branch
distance is the minimum of the two distances, 3.

If there are multiple branching statements along the path, one way of calcu-
lating the total branch distance of the generated path is to sum up all branch
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distances. In the example given above, for the same desired path, the input set
a = 23, b = 66, c = 69 will fail on the predicates on lines 4 and 14 with the
distances 47 and 3, respectively, making the total distance 50.

The major problem with branch distances is that they can not be applied
to all predicate types. They can easily be computed when the predicate is a
comparison between two numbers but it is hard to define a distance for the case
when the predicate is simply a boolean flag.

Another problem is that inputs which cause big portions of the code getting
skipped with small branch distances get better fitness values than inputs which
generate paths that follow the desired path more closely but fail with larger
distances. For example, the input set a = 1, b = 10, c = 15 will get the branch
distance 20 (15 for line 4 and 5 for line 8). Considering only branch distances
makes this second input set seem to be a better solution than the first set, which
did not fail at line 8.

Taking the first branch distance as the total distance is another method, but
it only helps in some cases. In the example, this method also does not solve the
explained problems with the given input sets.

2.2 Control Structures

Another evaluation method is to take into account the number of control struc-
tures in the desired path which are also covered by the generated path. An
approximation level can be defined to measure the number of correct branches
taken to reach a desired program construct [15].

In the triangle classification example, all paths will reach line 8. For a path
to reach line 15, the predicates on lines 8, 12, and 14 must be false, false and
true, respectively. The fitness of a path can simply be evaluated as the number
of correct branches taken. In this case, for the example, the first input set is
assigned the fitness value 2, whereas the second set is assigned the value 0.

The major problem with approximation levels is that fitness values are chosen
from a very small set and solutions that fail on the same predicate can not be
compared. In the example, there are 4 distinct fitness values (0 to 3). This makes
the search space consist of several plateaus and the search can not be guided
towards better solutions within these plateaus.

Another problem is that evaluation makes sense only for one program con-
struct such as a selection. If there are multiple such constructs, approximation
levels for each construct will be different. For example, the above discussion for
the triangle classification problem is relevant only for lines 8-15 and does not
cover the first three if-constructs on lines 2-7. To handle this situation, partial
aims are defined where each program construct is evaluated separately [15] which
makes the problem more complicated.

2.3 Combined Approaches

Fitness evaluation methods which combine branch distance and approximation
level methods have also been proposed. For example, primarily using approxi-
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mation levels and preferring the solution with the smaller branch distance when
the approximation levels are equal provides better guidance for the search. This
method would also solve the problem with the total branch distance definition
because taking the distance of the first incorrect branch would be suitable to
compare two equal paths. Multiobjective evaluation functions have also been
proposed where the fitness value is a function of the normalized approximation
level and branch distance scores [9]. However, the code under test will still need
to be partitioned to overcome the difficulties with evaluating multiple control
structures, especially in the presence of loops.

We should point out that the chaining approach [4] is a major technique
used in the field that solves some of the mentioned issues and introduces some
other difficulties. Since we are proposing a new fitness evaluation function, the
chaining approach is out of the scope of this paper.

3 Pairwise Sequence Comparison as a Fitness Measure

Pairwise sequence alignment can be defined as the process of finding matching
patterns that occur in the same order in two sequences. In biology, sequence
alignment is used to discover functional, structural or evolutionary similarities
between sequences such as DNA or protein sequences.

There are two types of sequence alignment approaches: global alignment tech-
niques are used for aligning entire sequences, whereas local alignment techniques
are used for aligning highly matching subsequences. Global alignment is more
appropriate if the sequences are quite similar, and they have similar lengths.
Local alignment is more appropriate if the sequences are highly similar in some
subsequences but dissimilar in the remaining parts, or they are very different in
length, or they share a region with specific functionality.

Two metrics are used for scoring the alignment of two sequences: one which
defines the similarity between two sequences based on the number of matching
items in the aligned sequences, and the other which defines the distance between
two sequences based on the number of mismatched items. In an optimal align-
ment, mismatching items are arranged and gaps are inserted to bring as many
matching items in alignment as possible to obtain the highest possible score,
while at the same time keeping the aligned sequences as short as possible.

After the alignment, for each location on the aligned sequences, one of three
situations will occur: a match if the elements are identical, a mismatch if the
elements are different, and a gap if one of the elements is a gap. To determine
issues such as whether gaps should be preferred to mismatches or how important
it is to have matches, scores are assigned to each of the three situations given
above. These scores are parameters of the algorithm and different scores result
in different alignments. Dynamic programming approaches which guarantee the
optimal alignment between two sequences have been proposed for both global
and local sequence alignment [11]. Detailed information on pairwise sequence
alignment and scoring can be found in [7] and [10].
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For the triangle classification example, the inputs a = 23, b = 66, c = 69
generate the path < 2, 4, 6, 8, 11, 12, 14, 16 >, and the inputs a = 1, b = 10, c =
15 generate the path < 2, 4, 6, 8, 9, 16 >. Possible alignments of these sequences
with the desired path < 2, 4, 5, 6, 8, 11, 12, 14, 15, 16 > are given in Figure 3.

desired: 2 4 5 6 8 11 12 14 15 16

generated: 2 4 - 6 8 11 12 14 - 16

(a) a=23 b=66 c=69

desired: 2 4 5 6 8 11 12 14 15 16

generated: 2 4 - 6 8 9 - - - 16

(b) a=1 b=10 c=15

Fig. 3. Aligned paths for the triangle classification example.

3.1 The Proposed Fitness Evaluation Method

We are proposing a new fitness evaluation method based on the pairwise simi-
larity of the desired path and the path generated by the input set. After aligning
these paths, the fitness will be defined as the ratio of the number of matches
to the length of the aligned sequences. If the two sequences are identical, all
elements in the aligned sequences will match and this will produce a fitness
of 1. Therefore, a fitness value of 1 will indicate an optimal solution. As seen
in Figure 3, this evaluation method assigns the fitness values 8/10 = 0.8 and
5/10 = 0.5 to the input sets in the triangle classification example.

This method has the advantage that it can be applied uniformly to all pro-
gram constructs, including loops. For the minimum and maximum element find-
ing example, if the path < 2, 3, 4, 5, 7, 9, 4, 5, 7, 8, 9, 4, 10 > is desired and the path
< 2, 3, 4, 5, 7, 8, 9, 4, 5, 7, 8, 9, 4, 5, 7, 8, 9, 4, 10 > is generated, a possible alignment
is given in Figure 4, for which the fitness would be calculated as 13/19 = 0.68.

desired: 2 3 4 5 7 - 9 4 5 7 8 9 4 - - - - - 10

generated: 2 3 4 5 7 8 9 4 5 7 8 9 4 5 7 8 9 4 10

|- pass1 -|- pass2 -|- pass3 -|

Fig. 4. Aligned paths for the minimum-maximum finding example.
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3.2 Sequence Distance

Pairwise sequence comparison suffers from a similar problem as approximation
level based fitness evaluation in that two different input data sets that generate
the same path can not be compared. To overcome this problem, we will define a
sequence distance as a measure of the amount of change needed to convert the
generated path to the desired path, thus providing guidance information to the
search algorithm.

Molecular biology defines three mutation operations to convert a source se-
quence into a destination sequence [10]. If the source and destination sequences
correspond to the generated and desired paths, then these operations describe
how to convert the generated path into the desired path:

1. insertion: A subsequence in the destination sequence is missing from the
source sequence, i.e. it has to be inserted into the source sequence. In our
problem, this case typically occurs when a selection or repetition construct
is not entered when it should. This case can be identified as a gap in the
aligned source sequence.

2. deletion: The source sequence contains a subsequence not found in the des-
tination sequence, i.e. it has to be deleted from the source sequence. In our
problem, this case typically occurs when a selection or repetition construct
is entered when it should not. This case can be identified as a gap in the
aligned destination sequence.

3. substitution: The item in the source sequence is different from the item in
the destination sequence. In our problem, this case typically occurs when
the wrong branch is taken at an if-else construct. This case can be identified
as a mismatch in the aligned sequences. In our problem we will consider this
case as a combination of deletion and insertion mutations.

For example, in Figure 3a, to convert the generated path into the desired
path, two insertion mutations are needed to add the lines 5 and 15 that corre-
spond to the gaps in the generated path. In Figure 3b, instead of interpreting
the change from line 9 to line 11 as a substitution mutation, we will apply a
deletion mutation for line 9 and an insertion mutation for lines 11-12-14-15.

In molecular biology, each gap is treated as a single mutation with the penalty
value based on the length of the gap. The gap opening penalty d is the branch
distance of an incorrect branch. It also makes sense that incorrect branches which
cause longer portions of the code being skipped or inserted should get higher
penalties. But instead of a linear penalty, we propose a logarithmic penalty as
in Equation 1, where the total sequence distance is the sum of all penalties.

pen(d, g) = d(1 + ln(g)) (1)

For the example in Figure 4, assuming that the branch distance on line 7
(pass 1) is 10 and on line 4 (pass 3) is 20, the total sequence distance is:

10(1 + ln(1)) + 20(1 + ln(5)) = 62.19
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Interpreting substitution mutations as deletion and insertion mutations of
length 1 results in the penalty calculation d(1 + ln(1)) = d. This scheme makes
it easier to implement than handling substitution mutations separately. Though
we have used the same penalty method for all of insertion, deletion and substi-
tution mutations, it is also possible to use different calculations for each type of
mutation.

4 Empirical Analysis

The outlines and relevant parameters of the evolutionary algorithm and the
sequence alignment algorithm are explained below along with the test setup and
a discussion of the results.

4.1 The Evolutionary Algorithm

Evolutionary Algorithms (EAs) [3], an umbrella term covering several slightly
differing techniques, are population based optimization approaches inspired from
classical Mendelian genetics and Darwin’s evolutionary theory. Genetic Algo-
rithms (GAs), Genetic Programming (GP) and Evolutionary Strategies (ES) are
the earlier representatives of EAs, developed approximately around the same
timeframe independently by different groups. GAs and ES are originally for
search and optimization tasks while GP is more for machine learning tasks and
automatic program generation. In the original proposals, they mainly differed
in the representation of solution candidates and the operators they used, e.g.
GAs used binary coded strings, ES used real-coded vectors whereas GP used
trees. However, over time, due to the requirements of the various applications
that emerged, the distinction between these approaches became less clear and
various representations and operators were used with each. Therefore it is ap-
propriate to refer to all such implementations as EAs in general.

We used a standard steady-state EA with duplicate elimination. Through du-
plicate elimination, all individuals in the population are genotypically different.
This ensures a good level of diversity in the population. In a steady-state EA,
at each iteration of the algorithm, a new individual is created from two parents
through selection, crossover and mutation and is inserted into the population
through a replacement scheme. The algorithmic flow of such a steady-state al-
gorithm is given in Algorithm 1. Further details about steady-state EAs can be
found in [3].

Representation Each individual in an EA, i.e. a solution candidate, consists
of a chromosome and a fitness value. For our problem, a chromosome consists
of genes each of which corresponds to an input parameter for the code being
tested. In traditional GAs, genes are binary valued. Therefore in earlier studies,
parameter values were converted into binary representations. For example, if
an integer parameter is defined to take on values in the interval [0, 7], it was
represented with a string of 3 bits. However, this is inefficient, especially in
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Algorithm 1 The steady-state evolutionary algorithm.
randomly initialize population
while max no of fitness evaluations not reached do

select parents
create child through cross-over
mutate child
if child is not duplicate then

if fitness of child better than fitness of worst then
child replaces worst in population

end if
else

discard child
end if

end while

cases where there is redundancy. It is more natural to represent each parameter
as it is, that is, as an integer if it takes on integer values, as a floating point
number if it takes on real values or binary values if it is a decision variable or a
boolean variable. For both of our sample test problems, the parameters take on
integer values within defined intervals. Therefore, the genes in our examples are
represented as integers. For example, in Section 3 for the triangle classification
example, it was shown that the inputs a = 23, b = 66, c = 69 generate the
path < 2, 4, 6, 8, 11, 12, 14, 16 >. In the EA, the chromosome for this case is
23 − 66 − 69.

Fitness Evaluation The proposed method which is explained in Section 3.1 is
used to evaluate the fitness of individuals. When two individuals are compared,
the one with the better sequence similarity score is preferred. In case the two
individuals have identical similarity scores, the one with the smaller sequence
distance is preferred. If the similarity score of an individual is 1, the individual
is an optimal solution.

Initialization The first population of the EA is initialized randomly within the
allowed intervals for each parameter. No individuals are allowed to be duplicates.

Selection Two individuals are selected as parents from the population to un-
dergo crossover to produce an offspring. Binary tournament selection [3] is used
for the selection step. In binary tournament selection, for each parent, two indi-
viduals are selected randomly from the whole population and the one with the
higher fitness becomes the parent.

Crossover One offspring individual is generated from two parents through
crossover. For the crossover step, uniform crossover technique is chosen in this
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study. Uniform crossover ensures a good mixing of parameters from both par-
ents. In uniform crossover, the offspring receives each gene from either of its
parents with equal probability. For example for parents P1 = 13 − 24 − 56 and
P2 = 36 − 12 − 25 a possible offspring may be 13 − 12 − 25 where the first gene
comes from P1 and the second and third genes come from P2.

Mutation Mutation is the step where new gene values are introduced into the
population. Mutation at each gene occurs with a predefined mutation prob-
ability pm which is usually very small and is commonly taken to be pm =
1/ChromosomeLength. Typically mutation is based on a neighborhood rela-
tionship defined between the points in the search space. In a binary represen-
tation, mutation is implemented through randomly changing the value of the
gene from 0 to 1 or vice versa. The corresponding mutation approach for integer
representations is called random resetting where the value of the gene is ran-
domly changed to another value within the allowed interval for that parameter.
However, this mutation approach frequently disrupts the search process since it
does not use any neighborhood information. Another mutation mechanism used
with integer representations is called creep mutation. Creep mutation preserves
the neighborhood information for integers since the integer value of the gene is
either incremented or decremented by a fixed step size. We used creep mutation
with a step size of 1 in this study.

Replacement In each iteration of a steady-state EA, a new individual is cre-
ated and is inserted into the population according to a replacement strategy. In
the most commonly used replacement scheme [3] for steady-state EAs, the new
individual replaces the worst individual in the population if it is better. Because
of duplicate elimination, if the newly created individual is a duplicate of any
existing individual, it is discarded. Otherwise, it is evaluated and its fitness is
compared to the fitness of the currently worst individual in the population. If
the child has better fitness, it replaces the worst individual in the population.

Termination The program is run until an optimal solution, i.e. an individ-
ual with a fitness value of 1, is found or until a predefined number of fitness
evaluations have been performed.

4.2 Sequence Alignment

A time-efficient method for sequence alignment, FastLSA, is described in [1].
However, since each fitness evaluation requires that the code under test will be
executed and therefore takes a long time, the time performance of the sequence
alignment algorithm plays a secondary role. For easier implementation, we used
a simple linear sequence alignment method based on Hirshberg’s algorithm [6]
which provides the same solution quality.

The algorithm first constructs a dynamic programming matrix by comparing
elements in both paths and using the match, mismatch and gap scores. These
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are selected as 2, -1, and -1, respectively. These are commonly used values in
sequence alignment applications and we have observed that they produce suitable
alignments for the test data generation problem.

The matrix is populated according to the algorithm given in Algorithm 2.
The nodes on the desired path constitute the columns and the nodes on the
generated path constitute the rows. A row and a column are inserted into the
table to represent the gap element. This insertion can be done at the beginning
or at the end; element calculation will start at the intersection of the inserted
row and column (which will have the value 0) and proceed toward the other
corner. In our study, we inserted the gap row and column at the beginning and
therefore proceeded from the upper left corner toward the lower right corner.

Each element in the matrix is calculated using the values of its neighbors
calculated so far. As can be seen in the algorithm, when an element is calcu-
lated, at most three values based on its already computed neighbors (horizontal,
vertical, and diagonal) will be considered and their maximum will be selected.

Algorithm 2 Computing the dynamic programming matrix.
rows ← length of desired path + 1
cols ← length of generated path + 1
for all i in rows do

for all j in cols do
horizontal ← horizontal neighbor + gap
vertical ← vertical neighbor + gapscore
if row node = column node then

diagonal ← diagonal neighbor + matchscore
else

diagonal ← diagonal neighbor + mismatchscore
end if
matrix[i][j] ← max(horizontal, vertical, diagonal)

end for
end for

After the matrix is populated, it is traversed to align the sequences according
to the algorithm given in Algorithm 3. Traversal begins either at the upper left
or lower right corner and proceeds toward the other corner. At each iteration, the
neighbor with the maximum value is selected as the next element. If the move
from the current element to the next element is diagonal, corresponding nodes in
both the desired and generated paths are selected. Horizontal or vertical moves
correspond to inserting gaps to either of the paths.

For example, if the desired path is < 2, 4, 5, 6, 8, 11, 12, 14, 15, 16 > and the
generated path is < 2, 4, 6, 8, 9, 16 >, the resulting matrix is given in Figure 5 and
a the outcome of the alignment algorithm as marked by the arrows is given in
Figure 3b. Note that the alignment starts at cell (2, 2) and at each transition the
element before the transition is taken from the corresponding row or column. For
example, on the transition from (9, 11) to (16, 12), the node 9 will be added to
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Algorithm 3 Aligning the sequences.
current ← corner element
while current not reached the other corner do

h ← horizontal neighbor of current
v ← vertical neighbor of current
d ← diagonal neighbor of current
next ← max(h, v, d)
if next = diagonal then

insert column node into aligned desired path
insert row node into aligned generated path

else if next = horizontal then
insert column node into aligned desired path
insert gap into aligned generated path

else
insert gap into aligned desired path
insert row node into aligned generated path

end if
current ← next

end while

the aligned generated path and the node 11 will be added to the aligned desired
path. It is also worth pointing out that the algorithm can produce different
outcomes due to selection among neighboring options. Our algorithm favors the
diagonal neighbor in such a case.

Fig. 5. Sequence alignment example.

4.3 Test Problems

The proposed method was tested with the triangle classification and minimum-
maximum element finding problems discussed throughout this paper. The mu-
tation and crossover probabilities are chosen as recommended in literature. The
settings of the population size and the maximum number of fitness evaluations
used as a termination condition are determined experimentally. The input pa-
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rameter ranges are selected such that they generate a moderately sized search
space.

For the triangle classification problem, the code given in Figure 1 was used
and following desired paths were tested:

– < 2, 4, 5, 6, 8, 11, 12, 14, 15, 16 >: This is a non-trivial path which is generated
when a = b > c. This path will be referred to as T1 in the test results.

– < 2, 4, 6, 8, 11, 12, 13, 16 >: This is the hardest path which is generated when
a = b = c. This path will be referred to as T2 in the test results.

All three input parameters are represented as integers in the range [1,1000].
The population size for the steady-state algorithm is 100. The probability for
the uniform crossover operator is 1 and the probability for the creep mutation
operator is 1/l, where l is the length of the chromosome, in this case 3. A max-
imum of 10000 solutions are evaluated and search stops if an optimum solution
is found.

For the minimum-maximum element finding problem, the code given in Fig-
ure 2 was used and following desired paths were tested:

– < 2, 3, 4, 5, 7, 9, 4, 5, 7, 8, 9, 4, 10 >: This path is taken from [8] and will be
referred to as M1 in the test results.

– < 2, 3, 4, 5, 7, 9, 4, 5, 7, 8, 9, 4, 5, 6, 7, 9, 4, 5, 6, 7, 9, 4, 10 >: This is a longer and
more complicated path than the above and will be referred to as M2 in the
test results.

The list parameter consists of 100 integers in the range [1,1000]. The other
three parameters are integers in the range [1,100]. As with the previous test
setup, the population size is 100, the crossover probability is 1 and the mutation
probability is 1/l, this time l being 103. A maximum of 50000 solutions are
evaluated and search stops if an optimum solution is found.

To observe the effects of similarity and distance scores, three evaluation meth-
ods have been tested for each problem:

– sequence similarity only (optimum fitness is 1)
– sequence distance only (optimum fitness is 0)
– sequence similarity and sequence distance: if the similarity scores are equal,

the solution with the smaller distance score is preferred

4.4 Test Results

For each of the three evaluation methods, each path is tested for 50 runs and
the following quantities are calculated:

– success rate (SR)
– in successful runs: average number of fitness evaluations (EAv) and the stan-

dard deviation (ESd)
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– in unsuccessful runs: average number of first hitting times (FAv) and the
standard deviation (FSd), where the first hitting time is defined as the num-
ber of fitness evaluations it has taken to find the overall best fitness

Using only sequence similarity evaluation resulted in very poor success rates.
In fact, other than the relatively simple path T1 in the triangle classification
problem, it failed to find a solution in any test. In the T1 test, the success rate
was 50%, with an average of 447.88 fitness evaluations and a standard deviation
of 409.44. An average first hitting time of 34.76 with a standard deviation of
65.82 indicates that a suboptimum is found fairly early and searching further
did not improve the performance. From these results, we can conclude that
similarity-only evaluation is not suitable even in moderately complex problems.

Using only sequence distances performed slightly better. As can be seen in
Table 1, it had a 100% success rate in the T1 test. It also occasionally did succeed
in the T2 test but a 28% success rate is still not acceptable. Using sequence
similarity together with sequence distance resulted in much better performance,
as can be seen in Table 2. The tests for T1, T2 and M1 were successful all the
time, whereas the test for M2 failed only once.

Table 1. Distance only.
P SR EAv ESd FAv FSd
T1 100% 523.66 213.47 - -
T2 28% 1266.21 598.78 567.36 257.03

Table 2. Similarity and distance.
P SR EAv ESd FAv
T1 100% 609.96 299.26 -
T2 100% 2284.38 1024.79 -
M1 100% 1980.86 1190.46 -
M2 98% 6449.71 6019.87 49807

5 Conclusions and Future Work

The proposed sequence similarity and sequence distance methods roughly have
the same guidance characteristics as approximation level and branch distance
methods, respectively. The advantage of the proposed methods is that they can
be applied to all parts of the code under test in the same way. Therefore, the
proposed fitness evaluation method is intuitive and easy to implement. Besides,
since they evaluate the paths in their entirety instead of processing them par-
tially, they have the potential of better exploiting the desirable characteristics
the input sets might have. Our current results are promising but more research
is needed to better analyze the performance on various problems and to identify
possible pitfalls in the algorithm. The major drawback of the current imple-
mentation is that the tester specifies the desired path. Work on eliminating this
requirement is currently being done.
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